【題目】執(zhí)行程序框圖,如果輸入的N的值為7,那么輸出的p的值是(
A.120
B.720
C.1440
D.5040

【答案】D
【解析】解:由程序框圖知:當輸入的N=7時, 模擬程序的運行,可得
第一次循環(huán)k=1,P=1;
第二次循環(huán)k=2,p=1×2=2;
第三次循環(huán)k=3,p=1×2×3=6;
第四次循環(huán)k=4,p=1×2×3×4=24;
第五次循環(huán)k=5,p=1×2×3×4×5=120.
第五次循環(huán)k=6,p=1×2×3×4×5×6=720.
第五次循環(huán)k=7,p=1×2×3×4×5×6×7=5040.
不滿足條件k<7,跳出循環(huán)體,輸出P=5040.
故選:D.
【考點精析】通過靈活運用程序框圖,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實根;
(3)若F(x)=﹣f(x)+4x+c,存在實數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知長方體ABCD﹣A1B1C1D1內(nèi)接于球O,底面ABCD是正方形,E為AA1的中點,OA⊥平面BDE,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)當a=1時,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2. (Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B﹣PE﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=3x+m3﹣x為奇函數(shù).
(1)求函數(shù)g(x)=f(x)﹣ 的零點;
(2)若對任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓C1:(x﹣1)2+(y+3)2=1與圓C2:(x﹣a)2+(y﹣b)2=1外離,過直線l:x﹣y﹣1=0上任意一點P分別做圓C1 , C2的切線,切點分別為M,N,且均保持|PM|=|PN|,則a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求數(shù)列{bn}的通項公式;
(2)求數(shù)列{bn3n}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,若AD的中點為M,DD1的中點為N,則異面直線MN與BD所成角的大小是

查看答案和解析>>

同步練習冊答案