設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足三點(diǎn)的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)作斜率為k的直線與橢圓C交于M,N兩點(diǎn),線段MN的垂直平分線與x軸相交于點(diǎn)P(m,0),求實(shí)數(shù)m的取值范圍.
(1);(2)
解析試題分析:(1)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/8/2fscu4.png" style="vertical-align:middle;" />,可得 (1)
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/c/f1wqf.png" style="vertical-align:middle;" />的外接圓與直線相切,所以有 (1)
解由(1)(2)組成的方程組可得橢圓的標(biāo)準(zhǔn)方程.
(2)由(1)橢圓的標(biāo)準(zhǔn)方程是,所以,設(shè)直線的方程為:,.由方程組:消去得,由韋達(dá)定理求出
的表達(dá)式,寫出線段MN的垂直平分線的方程,并求出的表達(dá)式,進(jìn)而用函數(shù)的方法求其取值范圍,要注意直線斜率不存在及斜率為0情況的討論.
解:(1)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/89/8/2fscu4.png" style="vertical-align:middle;" />,,所以,
即,則,. 3分
的外接圓圓心為,半徑 4分
由已知圓心到直線的距離為,所以,解得,所以,,
所求橢圓方程為. 6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/8/z18hw4.png" style="vertical-align:middle;" />,設(shè)直線的方程為:,.
聯(lián)立方程組:,消去得. 7分
則,,
的中點(diǎn)為. 8分
當(dāng)時(shí),為長(zhǎng)軸,中點(diǎn)為原點(diǎn),則. 9分
當(dāng)時(shí),垂直平分線方程
令,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/34/9/ncvie1.png" style="vertical-align:middle;" />,所以,可得, &n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知兩條拋物線和,過原點(diǎn)的兩條直線和,與分別交于兩點(diǎn),與分別交于兩點(diǎn).
(1)證明:
(2)過原點(diǎn)作直線(異于,)與分別交于兩點(diǎn).記與的面積分別為與,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓:的左頂點(diǎn)為,直線交橢圓于兩點(diǎn)(上下),動(dòng)點(diǎn)和定點(diǎn)都在橢圓上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)的坐標(biāo).
(3)若為實(shí)數(shù),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率,的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢圓”,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問是否存在過左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(﹣1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率.
(1)求橢圓C的方程;
(2)已知過點(diǎn)的直線與該橢圓相交于A、B兩點(diǎn),試問:在直線上是否存在點(diǎn)P,使得是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)為,點(diǎn)是橢圓上的一點(diǎn),與軸的交點(diǎn)恰為的中點(diǎn), .
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓的右頂點(diǎn),過焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)在軸上運(yùn)動(dòng),點(diǎn)在軸上,點(diǎn)
為平面內(nèi)的動(dòng)點(diǎn),且滿足,.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是直線:上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,,切點(diǎn)分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com