18.函數(shù)f(x)=log2(1+x)(x>0)的反函數(shù)f-1(x)=y=2x-1(x>0).

分析 根據(jù)f(x)=y=log2(1+x)(x>0),求出值域f(x)>0.用x把y表示出來(lái),把x與y互換即可得出.

解答 解:f(x)=y=log2(1+x)
∵x>0,
∴y>0,
由y=log2(1+x),
可得:x=2y-1
∴y=2x-1(x>0)
故答案為:y=2x-1(x>0)

點(diǎn)評(píng) 本題考查了反函數(shù)的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列敘述正確的是(  )
A.第一或第二象限的角都可作為三角形的內(nèi)角
B.鈍角比第三象限的角小
C.第四象限的角一定是負(fù)角
D.始邊相同而終邊不同的角一定不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[0,2]時(shí),f(x)=(x-1)2,如果g(x)=f(x)-log5|x-1|,則函數(shù)的所有零點(diǎn)之和為( 。
A.8B.6C.4D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,滿足關(guān)系3Sn-5Sn-1=3(n≥2)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)函數(shù)$f(x)=\frac{2x+3}{3x}$,作數(shù)列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通項(xiàng)公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.了研究某種細(xì)菌在特定環(huán)境下隨時(shí)間變化的繁殖情況,得如下實(shí)驗(yàn)數(shù)據(jù):
天數(shù)t(天)34567
繁殖個(gè)數(shù)y(千個(gè))2.5344.56
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測(cè)t=8時(shí),細(xì)菌繁殖個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=x2+1,g(x)=f(f(x))-2λf(x),若函數(shù)g(x)在區(qū)間[-2,-1]為增函數(shù),則λ的取值范圍為(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=(2k-1)x+1在R上單調(diào)遞減,則k的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知拋物線C:y2=2px(p>0)上一點(diǎn)(5,m)到焦點(diǎn)的距離為6,P,Q分別為拋物線C與圓M:(x-6)2+y2=1上的動(dòng)點(diǎn),當(dāng)|PQ|取得最小值時(shí),向量$\overrightarrow{PQ}$在x軸正方向上的投影為(  )
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知O為坐標(biāo)原點(diǎn),橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為P,右頂點(diǎn)為Q,以F1F2為直徑的圓O過(guò)點(diǎn)P,直線PQ與圓O相交得到的弦長(zhǎng)為$\frac{{2\sqrt{3}}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于M,N兩點(diǎn),l與x軸,y軸分別相交于A,B兩點(diǎn),滿足:①記MN的中點(diǎn)為E,且A,B兩點(diǎn)到直線OE的距離相等;②記△OMN,△OAB的面積分別為S1,S2,若S1=λS2.當(dāng)S1取得最大值時(shí),求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案