20.函數(shù)f(x)=|lgx|-cosx的零點的個數(shù)為4.

分析 函數(shù)f(x)=|lgx|-cosx的零點,即方程cosx=|lgx|的實數(shù)根,在同一坐標(biāo)系里作出y1=cosx和y2=|lgx|的圖象,利用數(shù)形結(jié)合思想能求出f(x)=|lgx|-cosx的零點的個數(shù).

解答 解:函數(shù)f(x)=|lgx|-cosx的零點,即方程cosx=|lgx|的實數(shù)根同一坐標(biāo)系里作出y1=cosx和y2=|lgx|的圖象

∵當(dāng)0<x≤10時,y2=|lgx|=lgx≤1,y2的圖象與y1=cosx的圖象有4個交點;
當(dāng)x>10時,y1=cosx≤1而y2=|lgx|=lgx>1,兩圖象沒有公共點
因此,函數(shù)y1=cosx和y2=|lgx|的圖象交點個數(shù)為4,
即f(x)=|lgx|-cosx的零點有4個
故答案為:4.

點評 本題考查函數(shù)的零點個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意數(shù)形結(jié)合思想的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求證:對任意x∈R,sinx,cos2x,1+sinx這3個函數(shù)的值至少有一個不大于$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在等比數(shù)列{an}中,已知a1+a3=2.5,a4+a6=20,求該數(shù)列的前10項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在等差數(shù)列{an}中,Sn為其前n項的和,已知a1+a3=22,S5=45.
(1)求an,Sn;                
(2)設(shè)數(shù)列{Sn}中最大項為Sk,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}中,a1=3,點(an,an+1)在直線y=x+3上.
(Ⅰ)求證數(shù)列{an}是等差數(shù)列,并求出數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=x(lnx-ax)在區(qū)間(0,e)上有兩個不同的極值點,則實數(shù)a的取值范圍是( 。 (e是自然對數(shù)的底數(shù))
A.$(\frac{1}{2e},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2e},+∞)$D.$(\frac{1}{e},\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正項數(shù)列{an}的前n項和為Sn,且2Sn=an(an+1),數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,現(xiàn)有如下結(jié)論:
①an=n;
②$\frac{{T}_{2n-1}}{2n-1}$=$\frac{1}{{a}_{n}}$;
③2T2n-Tn≥3-$\frac{1}{{2}^{n-1}}$;
④T2n-Tn$≥\frac{1}{2}$
其中正確結(jié)論的序號為①③④(填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)公差不為零的等差數(shù)列{an}的前5項的和為55,且a2,$\sqrt{{a_6}+{a_7}},{a_4}$-9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)數(shù)列bn=$\frac{1}{{({a_n}-6)({a_n}-4)}}$,求證:數(shù)列{bn}的前n項和Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=log3(x+1)+a,則f(-8)等于( 。
A.-3-aB.3+aC.-2D.2

查看答案和解析>>

同步練習(xí)冊答案