【題目】已知點,點是圓上的任意一點,設為該圓的圓心,并且線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)已知兩點的坐標分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標.
【答案】(1)(2)直線恒過一定點.
【解析】試題分析:(1)利用垂直平分線的性質(zhì)可得,再結(jié)合橢圓的定義,可得點的軌跡方程;(2)設直線的方程為與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系可得,利用兩直線方程,及, 的交點的橫坐標為,可得,結(jié)合前面兩式,化簡可得.則當時,恒成立,直線過定點.試題解析:(Ⅰ)依題意有, ,
且,
所以點的軌跡方程為: .
(Ⅱ)依題意設直線的方程為: ,
代入橢圓方程得:
且: ①,②
∵直線: ,直線:
由題知, 的交點的橫坐標為4,得:
,即
即: ,整理得:
③
將①②代入③得:
化簡可得:
當變化時,上式恒成立,故可得:
所以直線恒過一定點.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的減函數(shù),且f(x)>0恒成立,若對任意的x,y∈R,都有f(x﹣y)= ,
(1)求f(0)的值,并證明對任意的x,y∈R,f(x+y)=f(x)f(y);
(2)若f(﹣1)=3,解不等式 ≤9.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是 . (填序號)
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②在同一平面直角坐標系中,y=2x與y=2﹣x的圖象關(guān)于y軸對稱;
③y=( )﹣x是增函數(shù);
④定義在R上的奇函數(shù)f(x)有f(x)f(﹣x)≤0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩個命題p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點在上的射影為點,且, , .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和為Sn , 已知a1=10,a2為整數(shù),且Sn≤S4 , 設 ,則數(shù)列{bn}的前項和Tn為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為提高市場銷售業(yè)績,某公司設計兩套產(chǎn)品促銷方案(方案1運作費用為元/件;方案2的的運作費用為元/件),并在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷方案),運作一年后,對比該地區(qū)上一年度的銷售情況,分別統(tǒng)計相應營銷網(wǎng)點個數(shù),制作相應的列聯(lián)表如下表所示.
無促銷活動 | 采用促銷方案1 | 采用促銷方案2 | ||
本年度平均銷售額不高于上一年度平均銷售額 | 48 | 11 | 31 | 90 |
本年度平均銷售額高于上一年度平均銷售額 | 52 | 69 | 29 | 150 |
100 | 80 | 60 |
(Ⅰ)請根據(jù)列聯(lián)表提供的信息,為該公司今年選擇一套較為有利的促銷方案(不必說明理由);
(Ⅱ)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的組售價(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:
售價 | ||||||||
銷量 |
(。┱埜鶕(jù)下列數(shù)據(jù)計算相應的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;
(ⅱ)根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達到最大.
參考公式:相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(1,2), =(﹣3,2),當k為何值時:
(1)k + 與 ﹣3 垂直;
(2)k + 與 ﹣3 平行,平行時它們是同向還是反向?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com