【題目】f(n)=1+ + +…+ (n∈N*),計算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推測當n≥2時,有

【答案】f(2n)≥
【解析】解:已知的式子f(2)= , f(4)>2,
f(8)>
f(16)>3,
f(32)> ,…
可化為:f(2)= ,
f(22)>
f(23)> ,
f(24)>
f(25)> ,

以此類推,可得f(2n)≥
所以答案是:f(2n)≥
【考點精析】根據(jù)題目的已知條件,利用歸納推理的相關(guān)知識可以得到問題的答案,需要掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù), ).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)處取得極大值,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

(1)當時,求函數(shù)上的最大值;

(2)對任意的都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的圖象與x軸的交點中,相鄰兩條對稱軸之間的距離為,且圖象上一個最低點為M.

(1)求ω,φ的值;

(2)求f(x)的圖像的對稱中心;

(3)當x∈時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0<x<1,0<y<1, 求證 + + + ≥2 ,并求使等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線l上.

求圓的方程;

求過點且與圓相切的直線方程;

設(shè)圓x軸相交于A、B兩點,點P為圓上不同于A、B的任意一點,直線PA、PBy軸于MN當點P變化時,以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形所在的平面垂直于平面,,,.

(1)若的中點,求證:平面;

(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案