【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品.統(tǒng)計結(jié)果如下:
甲流水線樣本的頻數(shù)分布表
產(chǎn)品重量(克) | 頻數(shù) |
[490,495) | 6 |
[495,500) | 8 |
[500,505) | 14 |
[505,510) | 8 |
[510,515] | 4 |
乙流水線樣本的頻率分布直方圖
(1)求甲流水線樣本合格的頻率;
(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).
分類 | 甲流水線 | 乙流水線 | 總計 |
合格品 | |||
不合格品 | |||
總計 |
附:K2=.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1) ; (2)有的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).
【解析】
(1)利用頻率分布直方圖計算樣本合格的頻率;(2)完善2×2列聯(lián)表,代入公式求解.
(1)由表知甲流水線樣本中合格品數(shù)為8+14+8=30,故甲流水線樣本中合格品的頻率為=0.75.
(2)由(1)知甲流水線樣本中合格品格數(shù)30,乙流水線樣本中合格品數(shù)為0.9×40=36.
則2×2列聯(lián)表如下:
分類 | 甲流水線 | 乙流水線 | 總計 |
合格品 | 30 | 36 | 66 |
不合格品 | 10 | 4 | 14 |
總計 | 40 | 40 | 80 |
由2×2列聯(lián)表中的數(shù)據(jù)得K2的觀測值為
K=≈3.12>2.706.
故有90%的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)討論f(x)的單調(diào)性;
(2)若m>0,g(x)=f(x)+ 存在兩個極值點(diǎn)x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點(diǎn).
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司過去五個月的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知對呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:①銷售額與廣告費(fèi)支出正相關(guān);②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測技改后生產(chǎn)100噸甲產(chǎn)品比技改前少消耗多少噸標(biāo)準(zhǔn)煤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系中橢圓C的方程為ρ2= ,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(1)若橢圓上任一點(diǎn)坐標(biāo)為P(x,y),求 的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點(diǎn)Q,且直線AB與CD的傾斜角互補(bǔ),求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《幾何原本》卷2的幾何代數(shù)法(以幾何方法研究代數(shù)問題)成了后世西方數(shù)學(xué)家處理問題的重要依據(jù),通過這一原理,很多的代數(shù)的公理或定理都能夠通過圖形實現(xiàn)證明,也稱之為無字證明.現(xiàn)有如圖所示圖形,點(diǎn)F在半圓O上,點(diǎn)C在直徑AB上,且OF⊥AB,設(shè)AC=a,BC=b,則該圖形可以完成的無字證明為( )
A. (a>0,b>0)
B.a2+b2≥2ab(a>0,b>0)
C. (a>0,b>0)
D. (a>0,b>0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,過F作平行于x軸的直線交拋物線于A,B兩點(diǎn)(A在B的左側(cè)),若△AOB的面積為2.
(1)求拋物線C的方程;
(2)設(shè)P是拋物線C的準(zhǔn)線上一點(diǎn),Q是拋物線上的一點(diǎn),若PF⊥QF,求證:直線PQ與拋物線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD中點(diǎn),PA⊥底面ABCD,PA=2.
(1)證明:平面PBE⊥平面PAB;
(2)求直線PC與平面PBE所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com