已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=2,a4=16
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是等差數(shù)列,且b3=a3,b5=a5,求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)的和.
(I)設(shè)等比數(shù)列{an}的公比為q,∵首項(xiàng)a1=2,a4=16,∴16=2×q3,解得q=2.
an=2×2n-1=2n
(II)設(shè)等差數(shù)列{bn}的公差為d,∵b3=a3=23=8,b5=a5=25,
b1+2d=8
b1+4d=32
,解得
b1=-16
d=12
,
∴bn=-16+(n-1)×12=12n-28.
Sn=
n(-16+12n-28)
2
=6n2-22n.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校有教職員工150人,為了豐富教職工的課余生活,每天定時(shí)開放健身房和娛樂(lè)室.據(jù)調(diào)查統(tǒng)計(jì),每次去健身房的人有10%下次去娛樂(lè)室,而在娛樂(lè)室的人有20%下次去健身房,請(qǐng)問(wèn),隨著時(shí)間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?(假設(shè)這150人都會(huì)去參加活動(dòng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}中,已知公差d=
1
2
,且a1+a3+…+a99=60,則a1+a2+…+a100=( 。
A.170B.150C.145D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…,(2n-1)+
1
2n
,…的前n項(xiàng)和Sn的值為( 。
A.n2+1-
1
2n
B.2n2-n+1-
1
2n
C.n2+1-
1
2n-1
D.n2-n+1-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}前n項(xiàng)和為Sn,已知a1=13,S3=S11,n為______時(shí),Sn最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}中,a3=0,Sn是數(shù)列{an}的前n項(xiàng)和,則下列式子成立的是( 。
A.S3=0B.S4=0C.S5=0D.S6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}中,若a1+a2=-4,a9+a10=12,則S30=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的通項(xiàng)公式為an=pn+q(n∈N*,P>0).?dāng)?shù)列{bn}定義如下:對(duì)于正整數(shù)m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3;
(Ⅱ)若p=2,q=-1,求數(shù)列{bm}的前2m項(xiàng)和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列{an}的通項(xiàng)公式是an=(
1
2
)n
,則前3項(xiàng)和S3=( 。
A.
3
8
B.
5
8
C.
7
8
D.
9
8

查看答案和解析>>

同步練習(xí)冊(cè)答案