一塊邊長為10cm 的正方形鐵片按如圖1所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐(底面是正方形,從頂點向底面作垂線,垂足是底面的中心的四棱錐)形容器(如圖2).
(1)試把容器的容積V轉(zhuǎn)化為x的函數(shù);
(2)在正四棱錐E-ABCD中,若M是EC的中點,求證AE∥平面BDM.
考點:直線與平面平行的判定,函數(shù)解析式的求解及常用方法
專題:計算題,證明題,空間位置關(guān)系與距離
分析:(1)用x表示出底面面積和體高,求出體積,(2)連結(jié)AC,由線線平行證明線面平行.
解答: 解:(1)正四棱錐的底面邊長為x,
體高EO=
EF2-OF2
=
1
2
100-x2

則V=
1
3
×x2×
1
2
100-x2
=
1
6
x2
100-x2
(0<x<10).
(2)證明:如圖,連結(jié)AC,
∵M是EC的中點,O是AC的中點,
∴OM∥AE,
又∵AE?平面BDM,OM?平面BDM;
∴AE∥平面BDM.
點評:本題考查了空間中線面的位置關(guān)系及體積的求法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)隨機變量ξ~N(0,1),記Φ(x)=P(ξ<x),則P(-1<ξ<1)等于( 。
A、2Φ(1)-1
B、2Φ(-1)-1
C、
Φ(1)+Φ(-1)
2
D、Φ(1)+Φ(-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2
3
sin2
x
2
+2sin
x
2
cos
x
2
-
3
,
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當x∈[-
π
2
,
π
2
]
時,求函數(shù)f(x)的最值及相應(yīng)的x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=ax+1與雙曲線3x2-y2=1交于A、B點.
(1)求a的取值范圍;
(2)若以AB為直徑的圓過坐標原點,求實數(shù)a的值;
(3)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線y=
1
2
x對稱?若存在,請求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,f(logax)=
a
a2-1
(x-
1
x
).
(1)求f(x);
(2)討論f(x)的單調(diào)性和奇偶性;
(3)若f(x)定義域為(-1,1),解不等式f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(1-2x)100=a0+a1x+a2x2+…+a100x100,求:
(1)a1+a2+…+a100
(2)a0+a2+a4+…+a100
(3)a1+a3+a5+…+a99
(4)|a0|+|a1|+…+|a100|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中.
(1)求證:平面A1BD∥平面CD1B1
(2)求異面直線A1D與D1C所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為正方形,PA⊥AD,面PAD⊥面ABCD,PA=AD=2,E,F(xiàn),G分別是線段PA,PD,CD的中點,
(1)求證:PB∥面EFG;
(2)求異面直線EG與BD所成角的余弦;
(3)線段CD上是否存在點Q,使A到平面EFQ的距離為0.8?若存在,求出CQ長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
8
+y2=1任意一點P,則點P到直線l:x-y+4=0的最大距離等于
 

查看答案和解析>>

同步練習冊答案