【題目】2020年1月10日,引發(fā)新冠肺炎疫情的病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團(tuán)隊用小白鼠做接種試驗,檢測接種疫苗后是否出現(xiàn)抗體.試驗設(shè)計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).
(1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費100元,現(xiàn)有以下兩種試驗方案:
①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗,進(jìn)行下一接種周期,試驗持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元;
②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗,已知試驗至多持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元.本著節(jié)約成本的原則,選擇哪種實驗方案.
【答案】(1)分布列見解析;(2)①元;②選擇方案二.
【解析】
(1)利用二項分布的知識計算出分布列.
(2)①先求得一個接種周期的接種費用的期望值,由此求得三個接種周期的接種費用的期望值.
②首先求得“在一個接種周期內(nèi)出現(xiàn)2次或3次抗體”的概率,根據(jù)相互獨立事件概率計算公式,結(jié)合隨機(jī)變量期望值的計算,計算出花費的期望值.由于,所以選擇方案二.
(1)由題意可知,隨機(jī)變量服從二項分布,
故()
則的分布列為
0 | 1 | 2 | 3 | |
(2)①設(shè)一個接種周期的接種費用為元,則可能的取值為200,300,
因為,,
所以.
所以三個接種周期的平均花費為.
②隨機(jī)變量可能的取值為300,600,900,
設(shè)事件為“在一個接種周期內(nèi)出現(xiàn)2次或3次抗體”,由(1)知,.
所以,
,
,
所以
因為.
所以選擇方案二.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時,函數(shù)在上是單調(diào)函數(shù);
(2)當(dāng)時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,為自然對數(shù)的底數(shù)),若對于恒成立.
(1)求實數(shù)的值;
(2)證明:存在唯一極大值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程必過();
④在一個2×2列聯(lián)中,由計算得則有99%的把握確認(rèn)這兩個變量間有關(guān)系;
` 其中錯誤的個數(shù)是 ( )
本題可以參考獨立性檢驗臨界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將平面上每個點染為種顏色之一,同時滿足:
(1)每種顏色的點都有無窮多個,且不全在同一條直線上;
(2)至少有一條直線上所有的點恰為兩種顏色.
求的最小值,使得存在互不同色的四個點共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“十三五”規(guī)劃確定了到2020年消除貧困的宏偉目標(biāo),打響了精準(zhǔn)扶貧的攻堅戰(zhàn),為完成脫貧任務(wù),某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產(chǎn)某種型號醫(yī)療器械的月固定成本為20萬元,每生產(chǎn)1千件需另投入5.4萬元,設(shè)該公司一月內(nèi)生產(chǎn)該型號醫(yī)療器械x千件且能全部銷售完,每千件的銷售收入為萬元,已知
(1)請寫出月利潤y(萬元)關(guān)于月產(chǎn)量x(千件)的函數(shù)解析式;
(2)月產(chǎn)量為多少千件時,該公司在這一型號醫(yī)療器械的生產(chǎn)中所獲月利潤最大?并求出最大月利潤(精確到0.1萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進(jìn)行了問卷調(diào)查.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購迷與性別有關(guān)系”
男 | 女 | 總計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
總計 | 100 |
附:.
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣x﹣2>0},函數(shù)g(x)=的定義域為集合B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且CA,求實數(shù)P的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com