15.如圖所示,PA與四邊形ABCD所在平面垂直,且PA=BC=CD=BD,AB=AD,PD⊥DC.
(1)求證:AB⊥BC;
(2)若PA=$\sqrt{3}$,E為PC的中點,求三棱錐EABD的體積.

分析 (1)由已知得△PBC≌△PDC,則∠PBC=∠PDC,再由PD⊥DC,得PB⊥BC,由線面垂直的性質(zhì)可得PA⊥BC,再由線面垂直的判定可得BC⊥平面PAB,從而得到AB⊥BC;
(2)由已知結(jié)合(1)得∠ABD=30°,解三角形求得AB=1,求出三角形ABD的面積,再求出三棱錐EABD的高h(yuǎn)=$\frac{1}{2}PA=\frac{\sqrt{3}}{2}$,代入棱錐體積公式得答案.

解答 (1)證明:由PA⊥平面ABCD,AB=AD,可得PB=PD,
又BC=CD,∴△PBC≌△PDC,得∠PBC=∠PDC,
∵PD⊥DC,∴PB⊥BC,
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC,
又PA∩PB=P,∴BC⊥平面PAB,
∵AB?平面PAB,∴AB⊥BC;
(2)解:由BC=CD=BD,AB⊥BC,可得∠ABD=30°,
由AB=AD,BD=PA=$\sqrt{3}$,可得AB=1,
∴△ABD的面積S=$\frac{1}{2}$×1×1×sin120°=$\frac{\sqrt{3}}{4}$.
∵E為PC的中點,∴三棱錐EABD的高h(yuǎn)=$\frac{1}{2}PA=\frac{\sqrt{3}}{2}$,
故三棱錐EABD的體積V=$\frac{1}{3}×\frac{\sqrt{3}}{4}×\frac{\sqrt{3}}{2}=\frac{1}{8}$.

點評 本題考查直線與平面垂直的判定和性質(zhì),考查空間想象能力和思維能力,考查多面體體積的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=|x-1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若$g(x)=|{x+\frac{3}{2}}|+|{x-\frac{3}{2}}|(x∈$R),求證:$\frac{{|{a+1}|-|{2a-1}|}}{|a|}≤g(x)$對?a∈R,且a≠0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知菱形ABCD的邊長為4,∠BAD=150°,點E,F(xiàn)分別在邊BC,CD上,2CE=3EB,DC=λDF(λ∈R,λ≠0),若$\overrightarrow{AE}•\overrightarrow{AF}=\frac{42}{5}({1-\sqrt{3}})$,則λ的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中點,則|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知拋物線E:x2=4y的焦點為F,過點F的直線l交拋物線于A,B兩點.
(1)若點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值;
(2)過A,B分別作拋物線E的切線l1,l2,若l1與l2交于點P,求$\frac{\overrightarrow{FA}•\overrightarrow{FB}}{|\overrightarrow{PF}{|}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.當(dāng)實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$時,目標(biāo)函數(shù)z=ax+y的最大值為3,則實數(shù)a的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)全集U={x|1≤x≤5},若集合M={1},則∁UM=(1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某冰淇淋店要派車到100千米外的冷飲加工廠原料,再加工成冰淇淋后售出,已知汽車每小時的運行成本F(單位:元)與其自重m(包括車子、駕駛員及所載貨物等的質(zhì)量,單位:千克)和車速v(單位:千米/小時)之間滿足關(guān)系式:$F=\frac{1}{1600}m{v^2}$.在運輸途中,每千克冷飲每小時的冷藏費為10元,每千克冷飲經(jīng)過冰淇淋店再加工后,可獲利100元.若汽車重量(包括駕駛員等,不含貨物)為1.3噸,最大載重為1噸.汽車來回的速度為v(單位:千米/小時),且最大車速為80千米,一次進貨x千克,而且冰淇淋供不應(yīng)求.
(1)求冰淇淋店進一次貨,經(jīng)加工售賣后所得凈利潤w與車速v和進貨量x之間的關(guān)系式;
(2)每次至少進貨多少千克,才能使得銷售后不會虧本(凈利潤w≥0)?
(3)當(dāng)一次進貨量x與車速v分別為多少時,能使得冰淇淋店有最大凈利潤?并求出最大值.(提示:${({\sqrt{x+b}})^′}=\frac{1}{{2\sqrt{x+b}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓A:x2+y2+2x-15=0,過點B(1,0)作直線l(與x軸不重合)交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(Ⅰ) 求點E的軌跡方程;
(Ⅱ)動點M在曲線E上,動點N在直線$l:y=2\sqrt{3}$上,若OM⊥ON,求證:原點O到直線MN的距離是定值.

查看答案和解析>>

同步練習(xí)冊答案