定義在R上的奇函數(shù)y=f(x),已知y=f(x)在區(qū)間(0,+∞)有3個零點(diǎn),則函數(shù)y=f(x)在R上的零點(diǎn)個數(shù)為________.

7
分析:定義在R上的奇函數(shù)y=f(x),圖象關(guān)于原點(diǎn)對稱,在區(qū)間(0,+∞)有3個零點(diǎn),故在區(qū)間(-∞,0)上也有3個零點(diǎn),再由奇函數(shù)的定義可得 f(0)=0,由此得到
函數(shù)y=f(x)在R上的零點(diǎn)個數(shù).
解答:定義在R上的奇函數(shù)y=f(x),圖象關(guān)于原點(diǎn)對稱,在區(qū)間(0,+∞)有3個零點(diǎn),故在區(qū)間(-∞,0)上也有3個零點(diǎn),
再由奇函數(shù)的定義可得 f(0)=0,則函數(shù)y=f(x)在R上的零點(diǎn)個數(shù)為 7,
故答案為 7.
點(diǎn)評:本題主要考查根的存在性以及根的個數(shù)判斷,奇函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、下列說法錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:①y=1是冪函數(shù);    
②定義在R上的奇函數(shù)y=f(x)滿足f(0)=0
③函數(shù)f(x)=lg(x+
x2+1
)
是奇函數(shù)  
④當(dāng)a<0時,(a2)
3
2
=a3

⑤函數(shù)y=1的零點(diǎn)有2個;
其中正確結(jié)論的序號是
②③
②③
(寫出所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)y=f(x),當(dāng)x<0時,f(x)=(
1
3
)x
,那么,f(
1
2
)
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)y=f(x),已知y=f(x)在區(qū)間(0,+∞)有3個零點(diǎn),則函數(shù)y=f(x)在R上的零點(diǎn)個數(shù)為
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)y=f(x)在(-∞,0)上單調(diào)遞減,且f(2)=0,則滿足f(x)-f(-x)>0的實(shí)數(shù)x的范圍是(  )
A、(-∞,-2)B、(-2,0)∪(0,2)C、(-∞,-2)∪(0,2)D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案