15.已知函數(shù)f(x)=$\frac{1}{|x|-2}$.
(1)在坐標(biāo)系內(nèi)作出該函數(shù)的大致圖象,并寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)若方程f(x)-k=0恰有一個實數(shù)根,求實數(shù)k的值.

分析 (1)化為分段函數(shù),畫圖即可,并寫出函數(shù)的單調(diào)遞增區(qū)間
(2)結(jié)合圖象方程f(x)-k=0恰有一個實數(shù)根,則k=f(0).

解答 解:(1)f(x)=$\frac{1}{|x|-2}$,
當(dāng)x≥0時,f(x)=$\frac{1}{x-2}$,
當(dāng)x<0時,f(x)=-$\frac{1}{x+2}$,
畫出函數(shù)的圖象即可,
由圖象可得,函數(shù)在(-∞,-2),
(-2,0)上單調(diào)遞增,
(2)結(jié)合圖象方程f(x)-k=0恰有一個實數(shù)根,
則k=f(0)=-$\frac{1}{2}$.

點評 本題考查了絕對值函數(shù)圖象的畫法和方程根的問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,A,B,C所對的邊分別是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,則$\frac{c}$的值為( 。
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等比數(shù)列{an}中,${a_1}=1,q=\frac{1}{2},{a_n}=\frac{1}{64}$,則項數(shù)n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合A={x|a-1<x<2a+1},B={x|0<x<3}.
(1)若a=2,求A∪B;
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)x∈Z,集合A是奇數(shù)集,集合B是偶數(shù)集,命題P:?x∈A,2x∈B,則命題P的否定是( 。
A.?x∈A,2x∈BB.?x∉A,2x∉BC.?x∈A,2x∉BD.?x∉A,2x∉B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)向量$\vec a、\vec b$是互相垂直的兩個單位向量,且$|\vec a+3\vec b|=m|\vec a-\vec b|$,則實數(shù)m的值為(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=lg(3+x)+lg(3-x)
(1)求函數(shù)f(x)的定義域
(2)求證:f(x)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知lg(3a3)-lg(3b3)=9,則$\frac{a}$=1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.輸入兩個正整數(shù)a和b(>b),求它們的最大公約數(shù).

查看答案和解析>>

同步練習(xí)冊答案