【題目】已知函數(shù)fx)=2x33ax2+1

1)若a=﹣1,求函數(shù)fx)的單調(diào)區(qū)間;

2)若函數(shù)fx)有且只有2個不同的零點,求實數(shù)a的值;

3)若函數(shù)y|fx|[0,1]上的最小值是0,求實數(shù)a的取值范圍.

【答案】(1)函數(shù)fx)的增區(qū)間為(﹣,﹣1),(0,+∞),減區(qū)間為(﹣1,0

21

3[1,+∞

【解析】

(1)求出的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;

(2)通過討論的范圍,確定函數(shù)的單調(diào)性, 函數(shù)有且只有個不同的零點即可求得的值;

(3)通過討論的范圍,確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)上的最小值是并結(jié)合圖像可求得實數(shù)的取值范圍.

1時,

時,

,

時,,

故函數(shù)的增區(qū)間為,,減區(qū)間為

2,

時,上單調(diào)遞增,不存在兩個零點;

時,遞增,在遞減.

其圖象如下:

函數(shù)不存在2個不同的零點;

時,,遞增,在遞減.

其圖象如下:

只需,即可

綜上,函數(shù)有且只有個不同的零點,實數(shù)的值為.

3)①時,上單調(diào)遞增,,不符合題意;

時,遞增,,不符合題意;

時,遞增,在遞減.

圖象如下:

要使函數(shù)上的最小值是,只需,,

故實數(shù)的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個命題:

1命題,使得,則,都有;

2)已知函數(shù)f(x)|log2x|ab,f(a)f(b),ab1;

3若平面α內(nèi)存在不共線的三點到平面β的距離相等,則平面α平行于平面β;

4已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關于點對稱

其中真命題的序號為______________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)時,,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術創(chuàng)新活動,在實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為及以上的花苗為優(yōu)質(zhì)花苗.

求圖中的值,并求綜合評分的中位數(shù).

用樣本估計總體,以頻率作為概率,若在兩塊試驗地隨機抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;

填寫下面的列聯(lián)表,并判斷是否有的把握認為優(yōu)質(zhì)花苗與培育方法有關.

附:下面的臨界值表僅供參考.

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面邊上一點,,.

(1)證明:平面平面.

(2)若,試問:是否與平面平行?若平行,求三棱錐的體積;若不平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱,E是棱上動點,FAB中點,,

1)求證:平面;

2)當是棱中點時,求與平面所成的角;

3)當時,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中,,,.

1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;

2)在數(shù)列中,是否存在連續(xù)三項成等差數(shù)列?若存在,求出所有符合條件的項;若不存在,請說明理由;

3)若,,求證:使得,,成等差數(shù)列的點列在某一直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D為側(cè)棱AA1的中點.

1)求異面直線DC1,B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:

每月完成合格產(chǎn)品的件數(shù)(單位:百件)

頻數(shù)

10

45

35

6

4

男員工人數(shù)

7

23

18

1

1

(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關?

非“生產(chǎn)能手”

“生產(chǎn)能手”

合計

男員工

女員工

合計

(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學期望.

附:,

.

查看答案和解析>>

同步練習冊答案