6.已知拋物線C:y2=4x的焦點為F,P(x0,y0)是C上一點,且$|PF|=\frac{3}{2}{x_0}$,則x0的值為( 。
A.8B.4C.2D.1

分析 求出焦點坐標(biāo)坐標(biāo),根據(jù)拋物線的定義可知該點到準(zhǔn)線的距離與其到焦點的距離相等,進(jìn)而利用點到直線的距離求得x0的值即可.

解答 解:該拋物線C:y2=4x的焦點(1,0).P(x0,y0)是C上一點,且$|PF|=\frac{3}{2}{x_0}$,
根據(jù)拋物線定義可知x0+1=$\frac{3}{2}{x}_{0}$,解得x0=2,
故選:C.

點評 本題主要考查了拋物線的簡單性質(zhì).在涉及焦點弦和關(guān)于焦點的問題時常用拋物線的定義來解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若扇形的圓心角為$\frac{2}{3}$π弧度,r=2,則扇形的面積是( 。
A.$\frac{8}{3}$πB.$\frac{4}{3}$C.$\frac{3}{2}π$D.$\frac{4}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若A為不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x-y+2≥0}\end{array}\right.$表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到0時,動直線x+y=a掃過A中的那部分區(qū)域的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線lk:y=kx+k2(k∈R),下列說法中正確的是①③④.(注:把你認(rèn)為所有正確選項的序號均填上)
①lk與拋物線$y=-\frac{x^2}{4}$均相切;      
②lk與圓x2+(y+1)2=1均無交點;
③存在直線l,使得l與lk均不相交;   
④對任意的i,j∈R,直線li,lj相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x-y+1=0的傾斜角為( 。
A.-45°B.-30°C.45°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=|x-1|+|x+7|的最小值為n,則二項式(x+$\frac{1}{x}$)n展開式中$\frac{1}{{x}^{2}}$的系數(shù)為56(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-x,g(x)=lnx.
(Ⅰ)求函數(shù)y=xg(x)的單調(diào)區(qū)間;
(Ⅱ)若t∈[$\frac{1}{2}$,1],求y=f[xg(x)+t]在x∈[1,e]上的最小值(結(jié)果用t表示);
(Ⅲ)關(guān)于x的不等式g(x)-$\frac{a}{2}$f(x)≤($\frac{3}{2}$a-1)x-1恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=cos($\frac{1}{2}$x+$\frac{π}{6}$)的圖象向右平移φ(φ>0)個單位,所得函數(shù)圖象關(guān)于y軸對稱,則φ的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點P在x+2y-1=0上,點Q在直線x+2y+3=0上,則線段PQ中點M的軌跡方程是x+2y+1=0;若點M的坐標(biāo)(x,y)又滿足不等式$\left\{\begin{array}{l}y≤\frac{x}{3}+2\\ y≤-x+2\end{array}\right.$,則$\sqrt{{x^2}+{y^2}}$的最小值是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案