已知等差數(shù)列滿(mǎn)足:,的前項(xiàng)和為.
(1)求及;
(2)令,求數(shù)列的前項(xiàng)和.
(1);(2).
解析試題分析:(1)將條件中的式子用等差數(shù)列的首項(xiàng)、公差來(lái)表示,聯(lián)立方程求解即可計(jì)算出首項(xiàng)與公差,然后由可計(jì)算出與;(2)由(1)中計(jì)算出,從而確定,最后利用裂項(xiàng)相消法求和即可.
試題解析:(1)設(shè)等差數(shù)列的首項(xiàng)為,公差為
由,可得,解得 3分
∵,∴ 6分
(2)∵,∴
因此 9分
故
∴數(shù)列的前n項(xiàng)和 12分.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式及其前項(xiàng)和公式;2.裂項(xiàng)相消法求和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和。
(1)求數(shù)列的通項(xiàng)公式;
(2)求的最大或最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在正項(xiàng)等比數(shù)列中,公比,且和的等比中項(xiàng)是.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,判斷數(shù)列的前項(xiàng)和是否存在最大值,若存在,求出使最大時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列,,且滿(mǎn)足.
(1)求證數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和滿(mǎn)足
(Ⅰ)證明為等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè);求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的首項(xiàng)其中,,令集合.
(1)若是數(shù)列中首次為1的項(xiàng),請(qǐng)寫(xiě)出所有這樣數(shù)列的前三項(xiàng);
(2)求證:對(duì)恒有成立;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是等比數(shù)列,首項(xiàng).
(l)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列,證明數(shù)列是等差數(shù)列并求前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列 的前項(xiàng)和是且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前項(xiàng)的和 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com