分析 (1)連接PA,PB,BC,設(shè)∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,運(yùn)用圓的性質(zhì)和四點(diǎn)共圓的判斷,可得E,C,D,F(xiàn)共圓,再由圓內(nèi)接四邊形的性質(zhì),即可得到所求∠PCD的度數(shù);
(2)運(yùn)用圓的定義和E,C,D,F(xiàn)共圓,可得G為圓心,G在CD的中垂線上,即可得證.
解答 (1)解:連接PB,BC,
設(shè)∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,
∠PBA=∠4,∠PAB=∠5,
由⊙O中$\widehat{AB}$的中點(diǎn)為P,可得∠4=∠5,
在△EBC中,∠1=∠2+∠3,
又∠D=∠3+∠4,∠2=∠5,
即有∠2=∠4,則∠D=∠1,
則四點(diǎn)E,C,D,F(xiàn)共圓,
可得∠EFD+∠PCD=180°,
由∠PFB=∠EFD=2∠PCD,
即有3∠PCD=180°,
可得∠PCD=60°;
(2)證明:由C,D,E,F(xiàn)共圓,
由EC的垂直平分線與FD的垂直平分線交于點(diǎn)G
可得G為圓心,即有GC=GD,
則G在CD的中垂線,又CD為圓G的弦,
則OG⊥CD.
點(diǎn)評(píng) 本題考查圓內(nèi)接四邊形的性質(zhì)和四點(diǎn)共圓的判斷,以及圓的垂徑定理的運(yùn)用,考查推理能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 48 | C. | 60 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,3] | B. | (-∞,2]∪[3,+∞) | C. | [3,+∞) | D. | (0,2]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{9π}{2}$ | C. | 6π | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①和②均為真命題 | B. | ①和②均為假命題 | ||
C. | ①為真命題,②為假命題 | D. | ①為假命題,②為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期是2π | B. | 函數(shù)f(x)在定義域內(nèi)是奇函數(shù) | ||
C. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù) | D. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com