下列代數(shù)式(其中k∈N*)能被9整除的是(  )
A.6+6·7kB.2+7k-1
C.2(2+7k+1)D.3(2+7k)
D
(1)當(dāng)k=1時(shí),A答案值為48,B答案值為3,C答案值為102,D答案值為27.
顯然只有3(2+7k)能被9整除.
(2)假設(shè)當(dāng)k=n(n∈N*)時(shí),命題成立,
即3(2+7n)能被9整除,
那么3(2+7n+1)=21(2+7n)-36.
這就是說(shuō),當(dāng)k=n+1時(shí),命題也成立.
由(1)(2)可知,命題對(duì)任何k∈N*都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x-xlnx,數(shù)列{an}滿足0<a1<1,an+1=f(an).求證:
(1)函數(shù)f(x)在區(qū)間(0,1)是增函數(shù);
(2)an<an+1<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明對(duì)n∈N都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:++…+= (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)組成集合,從集合中任取個(gè)數(shù),其所有可能的個(gè)數(shù)的乘積的和為(若只取一個(gè)數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時(shí),,,;當(dāng)時(shí),,,
(Ⅰ)求;
(Ⅱ)猜想,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(1)若函數(shù),且當(dāng)時(shí),猜想的表達(dá)式           
(2)用反證法證明命題"若能被3整除,那么中至少有一個(gè)能被3整除"時(shí),假設(shè)應(yīng)為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證時(shí),左邊應(yīng)取的項(xiàng)是
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在用數(shù)學(xué)歸納法證明時(shí),則當(dāng)時(shí)左端應(yīng)在的基礎(chǔ)上加上的項(xiàng)是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列中,,, 為該數(shù)列的前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對(duì)一切正整數(shù)都成立,求正整數(shù)的最大值,并證明結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案