原命題:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”的逆命題、否命題、逆否命題中真命題有( 。﹤(gè).
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)
考點(diǎn):四種命題的真假關(guān)系,四種命題間的逆否關(guān)系
專(zhuān)題:簡(jiǎn)易邏輯
分析:先寫(xiě)出原命題的逆命題,否命題,再判斷真假即可,這里注意c2的取值.在判斷逆否命題的真假時(shí),根據(jù)原命題和它的逆否命題具有相同的真假性判斷原命題的真假即可.
解答: 解:逆命題:設(shè)a,b,c∈R,若ac2>bc2,則a>b;∵由ac2>bc2可得c2>0,∴能得到a>b,所以該命題為真命題;
否命題:設(shè)a,b,c∈R,若a≤b,則ac2≤bc2;∵c2≥0,∴由a≤b可以得到ac2≤bc2,所以該命題為真命題;
因?yàn)樵}和它的逆否命題具有相同的真假性,所以只需判斷原命題的真假即可;
∵c2=0時(shí),ac2=bc2,所以由a>b得到ac2≥bc2,所以原命題為假命題,即它的逆否命題為假命題;
∴為真命題的有2個(gè).
故選C.
點(diǎn)評(píng):考查原命題,逆命題,否命題,逆否命題的概念,以及原命題和它的逆否命題的真假關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線l1:x+my+6=0和l2:(m-2)x+3y+2m=0,當(dāng)m=
 
時(shí)l1∥l2;當(dāng)m=
 
時(shí)l1⊥l2;當(dāng)m
 
時(shí)l1與l2相交;當(dāng)m=
 
時(shí)l1與l2重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z1=3和z2=-5+5i,復(fù)數(shù)z1和z2在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)分別為A、B、O為原點(diǎn),則△AOB的面積為(  )
A、
15
2
B、
15
2
2
C、
15
6
4
D、
15
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,各點(diǎn)的坐標(biāo)分別為A(1,2),B(2,4),C(-2,2),求:
(1)BC邊上的中線AD的長(zhǎng)度和方程;
(2)求過(guò)A、B、C的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c,d,m,n均為正實(shí)數(shù),p=
ab
+
cd
,q=
ma+nc
b
m
+
d
n
,那么( 。
A、p≤q
B、p≥q
C、p<q
D、p、q之間的大小關(guān)系不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在C(-3,4),半徑長(zhǎng)是5的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z是復(fù)數(shù),a(z)表示滿(mǎn)足zn+2=1的最小正整數(shù)n,則對(duì)虛數(shù)單位i,a(i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=
1
a
x(a>0)的焦點(diǎn)F的一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長(zhǎng)分別是p、q,則
1
p
+
1
q
等于( 。
A、2a
B、
1
2a
C、4a
D、
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=2,求下列各式的值:
(1)
sin(π-θ)+cos(θ-π)
sin(θ+π)+cos(θ+π)
;
(2)sin2θ.

查看答案和解析>>

同步練習(xí)冊(cè)答案