【題目】已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一點,O為坐標原點,則直線OA與y=x2+1有交點的概率是( )
A.
B.
C.
D.
【答案】B
【解析】解:∵集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一點,∴點A有可能是(1,2),(2,1),(1,3),(3,1),(1,4),
(4,1),(2,3),(3,2),(2,4),(4,2),(3,4),(4,3),共12種可能,
當A(1,2)時,直線OA:y=2x,與y=x2+1有交點(1,2);
當A(2,1)時,直線OA:y= x,與y=x2+1沒有交點;
當A(1,3)時,直線OA:y=3x,與y=x2+1有交點;
當A(3,1)時,直線OA:y= x,與y=x2+1沒有交點;
當A(1,4)時,直線OA:y=4x,與y=x2+1有交點;
當A(4,1)時,直線OA:y= x,與y=x2+1沒有交點;
當A(2,3)時,直線OA:y= x,與y=x2+1沒有交點;
當A(3,2)時,直線OA:y= ,與y=x2+1沒有交點;
當A(2,4)時,直線OA:y=2x,與y=x2+1有交點(1,2);
當A(4,2)時,直線OA:y= x,與y=x2+1沒有交點;
當A(3,4)時,直線OA:y= x,與y=x2+1沒有交點;
當A(4,3)時,直線OA:y= x,與y=x2+1沒有交點(1,2).
∴直線OA與y=x2+1有交點的概率p= = .
故選:B.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|lgx|.若a≠b且,f(a)=f(b),則a+b的取值范圍是( )
A.(1,+∞)
B.[1,+∞)
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為3的正方體ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的奇函數和偶函數,且f(x)+g(x)=3x .
(1)求 f(x),g(x);
(2)若對于任意實數t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求實數a的取值范圍;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.若x在 內,則sinx>cosx
B.函數 的圖象的一條對稱軸是
C.函數 的最大值為π
D.函數y=sin2x的圖象可以由函數 的圖象向右平移 個單位而得
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數f(x)=2sin(3x﹣ ),有下列命題:①其表達式可改寫為y=2cos(3x﹣ );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( , )上是增函數;④將函數y=2sin3x的圖象上所有點向左平行移動 個單位長度就得到函數y=f(x)的圖象.其中正確的命題的序號是(注:將你認為正確的命題序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(﹣1,1)上的函數f(x)滿足: ,當x∈(﹣1,0)時,有f(x)>0,且 .設 ,則實數m與﹣1的大小關系為( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com