如圖,在直角坐標(biāo)系中,中心在原點,焦點在X軸上的橢圓G的離心率為,左頂點A(-4,0),圓O':(x-2)2+y2=r2是橢圓G的內(nèi)接△ABC的內(nèi)切圓.
(Ⅰ) 求橢圓G的方程;
(Ⅱ)求圓O'的半徑r;
(Ⅲ)過M(0,1)作圓G的兩條切線交橢圓于E,F(xiàn)兩點,判斷直線EF與圓O'的位置關(guān)系,并證明.

【答案】分析:(Ⅰ)利用橢圓G的離心率為,左頂點A(-4,0),可求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 可取BC⊥X軸時來研究,則可設(shè)B(2+r,y),過圓心G作GD⊥AB于D,BC交長軸于H由,再由點B(2+r,y)在橢圓上,建立關(guān)于r的方程求解.
(Ⅲ)設(shè)過點M(0,1)與圓相切的直線方程為:y-1=kx,由圓心到直線的距離等于半徑求,與橢圓方程聯(lián)立,表示出E,F(xiàn)和坐標(biāo),從而得到EF所在的直線的方程,再探討圓心到直線的距離和半徑的關(guān)系.
解答:解:(Ⅰ) ,a=4得,橢圓G方程為-------(5分)
(Ⅱ)設(shè)B(2+r,y),過圓心o'作O'D⊥AB于D,BC交長軸于H
,即     (1)---------(7分)
而點B(2+r,y)在橢圓上,(2)-----(9分)
由(1)、(2)式得15r2+8r-12=0,解得(舍去)-------(11分)
(Ⅲ)直線EF與圓O'的相切
設(shè)過點M(0,1)與圓相切的直線方程為:y-1=kx(3)
,即32k2+36k+5=0(4)
解得
將(3)代入得(16k2+1)x2+32kx=0,則異于零的解為-------(13分)
設(shè)F(x1,k1x1+1),E(x2,k2x2+1),則
則直線FE的斜率為:
于是直線FE的方程為:
則圓心(2,0)到直線FE的距離故結(jié)論成立.------------(15分)
點評:本題主要是通過圓和橢圓來考查直線和圓,直線和橢圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),
過點P(1,0)作直線分別交射線OA、OB于A、B點.
①當(dāng)AB的中點為P時,求直線AB的方程;
②當(dāng)AB的中點在直線y=
1
2
x上時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo),求:
(1)直線AB的一般式方程;
(2)AC邊上的高所在直線的斜截式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,直線y=6-x與y=
4x
(x>0)
的圖象相交于點A、B,設(shè)點A的坐標(biāo)為(x1,y1),那么長為x1,寬為y1的矩形面積和周長分別為
4,12
4,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數(shù)),平面上的點P滿足PA+PB=6m.
(1)試求點P的軌跡C1的方程;
(2)若點(x,y)在曲線C1上,求證:點(
x
3
y
2
2
)
一定在某圓C2上;
(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,中心在原點,焦點在x軸上的橢圓G的離心率為
15
4
,左頂點為A(-4,0).圓O′:(x-2)2+y2=
4
9

(Ⅰ)求橢圓G的方程;
(Ⅱ)過M(0,1)作圓O′的兩條切線交橢圓于E、F,判斷直線EF與圓的位置關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案