若復(fù)數(shù)z滿足(
3
-3i)z=6i(i是虛數(shù)單位),則z的虛部為( 。
A、
3
2
B、
3
2
C、
3
D、-
1
2
考點(diǎn):復(fù)數(shù)相等的充要條件
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的基本運(yùn)算進(jìn)行化簡(jiǎn)即可得到結(jié)論.
解答: 解:由(
3
-3i)z=6i,
得z=
6i
3
-3i
=
6i(
3
+3i)
(
3
-3i)(
3
+3i)
=
-18+6
3
i
12
=-
3
2
+
3
2
i,
故z的虛部為
3
2
,
故選:A
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)調(diào)查某社區(qū)80個(gè)人,以研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,得到數(shù)據(jù)表:
休閑方式
性別
看電視看書(shū)合計(jì)
105060
101020
合計(jì)206080
(Ⅰ)在該社區(qū)隨機(jī)調(diào)查3名男性(以所抽取樣本的頻率估計(jì)為總體的概率),設(shè)調(diào)查的3人在這一時(shí)間段以看書(shū)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系?
參考公式:K2=
n(ad-bc)2
(a+b)(c-d)(a+c)(b+d)
,其中n=a+b+c-d.
參考數(shù)據(jù):
P(K2≥K00.150.100.050.0250.010
K02.0722.7063.8415.0426.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x-y+2=0的傾斜角是(  )
A、
π
6
B、
π
4
C、
π
3
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x2)的定義域?yàn)閇-1,1],則f(log2x)的定義域?yàn)?div id="m1ouwgq" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
i
1-i
,則z的實(shí)部為( 。
A、
1
4
B、
1
2
C、
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
n→∞
2n
2n+1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m>3”是“方程
x2
m-1
-
y2
m-3
=1表示雙曲線”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x3-4x2+5x+1的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為三個(gè)內(nèi)角∠A、∠B、∠C的對(duì)邊,已知b2+c2=a2+bc,若sin2A-sin(A-C)=sinB,求∠C的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案