【題目】如圖,四棱錐P﹣ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(Ⅰ)證明:直線CE∥平面PAB;
(Ⅱ)點(diǎn)M在棱PC 上,且直線BM與底面ABCD所成角為45°,求二面角M﹣AB﹣D的余弦值.
【答案】(Ⅰ)證明:取PA的中點(diǎn)F,連接EF,BF,因?yàn)镋是PD的中點(diǎn),
所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,
∴BCEF是平行四邊形,可得CE∥BF,BF平面PAB,CF平面PAB,
∴直線CE∥平面PAB;
(Ⅱ)解:四棱錐P﹣ABCD中,
側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC= AD,
∠BAD=∠ABC=90°,E是PD的中點(diǎn).
取AD的中點(diǎn)O,M在底面ABCD上的射影N在OC上,設(shè)AD=2,則AB=BC=1,OP= ,
∴∠PCO=60°,直線BM與底面ABCD所成角為45°,
可得:BN=MN,CN= MN,BC=1,
可得:1+ BN2=BN2 , BN= ,MN= ,
作NQ⊥AB于Q,連接MQ,
所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ=
= ,
二面角M﹣AB﹣D的余弦值為: = .
【解析】(Ⅰ)取PA的中點(diǎn)F,連接EF,BF,通過(guò)證明CE∥BF,利用直線與平面平行的判定定理證明即可.
(Ⅱ)利用已知條件轉(zhuǎn)化求解M到底面的距離,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.
【考點(diǎn)精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱錐的所有棱長(zhǎng)都相等,是的中點(diǎn),則,所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱錐P﹣ABCD的體積為 ,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與BC1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線: ,點(diǎn)為的左焦點(diǎn),點(diǎn)為上位于第一象限內(nèi)的點(diǎn),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,,,則的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)是定義在R上的奇函數(shù),對(duì)任意的x∈R,滿足f(x+1)+f(x)=0,且當(dāng)0<x<1時(shí),f(x)=2x , 則f(﹣ )+f(4)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】考察下列命題:其中正確的命題有 ( )
(1)擲兩枚硬幣,可能出現(xiàn)“兩個(gè)正面”、“兩個(gè)反面”、“一正一反”3種結(jié)果;
(2)某袋中裝有大小均勻的三個(gè)紅球、二個(gè)黑球、一個(gè)白球,那么每種顏色的球被摸到的可能性相同;(3)從中任取一數(shù),取到的數(shù)小于0與不小于0的可能性相同;
(4)分別從3個(gè)男同學(xué)、4個(gè)女同學(xué)中各選一個(gè)作代表,那么每個(gè)同學(xué)當(dāng)選的可能性相同;
(5)5人抽簽,甲先抽,乙后抽,那么乙與甲抽到某號(hào)中獎(jiǎng)簽的可能性肯定不同.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com