圓O是的外接圓,過點C的圓的切線與AB的延長線交于點D,,AB=BC=3,求BD以及AC的長.

解析試題分析:解:由切割線定理得
,故,
解得                             (6分)
因為,所以  (8分)
所以,得(10分)
考點:切割線定理
點評:此類題目常涉及的圖形有圓、切線和三角形。在解決此類題目時,常要找出兩個相似三角形。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,過圓O外一點P作該圓的兩條割線PAB和PCD,分別交圓O于點A,B,C,D弦AD和BC交于Q點,割線PEF經(jīng)過Q點交圓O于點E、F,點M在EF上,且:
(I)求證:PA·PB=PM·PQ.
(II)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知C點在⊙O直徑BE的延長線上,CA切⊙O于A 點,CD是∠ACB的平分線且交AE于點F,交AB于點D

(1)求∠ADF的度數(shù); (2)若AB=AC,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,如圖,在平行四邊形ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.

(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個內接三角形,
DG∥BC,求正方形DEFG面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:如圖,的外接圓,直線的切線,切點為,直線,交、交,上一點,且.

求證:(Ⅰ)
(Ⅱ)點、、共圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
如圖,、是圓的兩條平行弦,,交圓于,過點的切線交的延長線于,.

(1)求的長;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講.
如圖,⊙O內切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

⑴證明:圓心O在直線AD上;
⑵證明:點C是線段GD的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DEAB于點H,
AH=2.
(Ⅰ)求DE的長;
(Ⅱ)延長EDP,過P作圓O的切線,切點為C,
PC=2,求PD的長.

查看答案和解析>>

同步練習冊答案