已知曲線y=x3+x-2在點P0處的切線l1平行直線4x-y-1=0,且點P0在第三象限,
(1)求P0的坐標;
(2)若直線l⊥l1,且l也過切點P0,求直線l的方程.
(1)由y=x3+x-2,得y′=3x2+1,
由已知得3x2+1=4,解之得x=±1.
當x=1時,y=0;
當x=-1時,y=-4.
又∵點P0在第三象限,
∴切點P0的坐標為(-1,-4);
(2)∵直線l⊥l1,l1的斜率為4,
∴直線l的斜率為-
1
4

∵l過切點P0,點P0的坐標為(-1,-4)
∴直線l的方程為y+4=-
1
4
(x+1)即x+4y+17=0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a∈R,若函數(shù)y=x3+ax,x∈R有大于零的極值點,則(  )
A.a(chǎn)>0B.a(chǎn)<0C.a(chǎn)≥0D.a(chǎn)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c(a,b,c∈R),當且僅當x=1,x=-1時,f(x)取得極值,并且極大值比極小值大c.
(1)求常數(shù)a,b,c的值;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c的圖象都過點p(2,0),且在點p處有相同的切線.
(1)求實數(shù)a,b,c
(2)設(shè)函數(shù)F(x)=f(x)+g(x),求F(x)在[2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:f(x)=ax3-x2+x過點P(3,3).
(1)求a的值;
(2)求曲線C在點P(3,3)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求曲線y=
1
x
和y=x2在它們交點處的兩條切線與x軸所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,其中-3,2,4是f'(x)=0的根,現(xiàn)給出下列命題:
(1)f(4)是f(x)的極小值;
(2)f(2)是f(x)極大值;
(3)f(-2)是f(x)極大值;
(4)f(3)是f(x)極小值;
(5)f(-3)是f(x)極大值.
其中正確的命題是(  )
A.(1)(2)(3)(4)(5)B.(1)(2)(5)C.(1)(2)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

實數(shù)a∈[-1,1],b∈[0,2].設(shè)函數(shù)f(x)=-
1
3
x3+
1
2
ax2+bx
的兩個極值點為x1,x2,現(xiàn)向點(a,b)所在平面區(qū)域投擲一個飛鏢,則飛鏢恰好落入使x1≤-1且x2≥1的區(qū)域的概率為(  )
A.
1
2
B.
1
3
C.
1
4
D.
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,x=±1是函數(shù)f(x)=ax3+bx2+cx+d的兩個極值點,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則不等式x•f′(x)>0的解集為______.

查看答案和解析>>

同步練習(xí)冊答案