如圖所示, 底面直徑為的圓柱被與底面成的平面所截,其截口是一個(gè)橢圓,則這個(gè)橢圓的離心率為               
由圖可知,橢圓的長軸長,則,短軸長為,則,所以,故
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的點(diǎn),以為圓心的圓與軸相切于橢
圓的焦點(diǎn),圓軸相交于兩點(diǎn).若為銳角三角形,則橢圓的離心率
的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點(diǎn)為、,點(diǎn)在橢圓上,若,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)
已知橢圓的方程為,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓為橢圓的“伴隨圓”,橢圓的短軸長為2,離心率為
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若直線與橢圓交于兩點(diǎn),與其“伴隨圓”交于兩點(diǎn),當(dāng) 時(shí),求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓上的點(diǎn)到右焦點(diǎn)F的最小距離是,到上頂點(diǎn)的距離為,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(I)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)且與軸不垂直的直線與橢圓交于、兩點(diǎn),使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的右焦點(diǎn)為,直線 軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(,為直徑的兩個(gè)端點(diǎn)),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題14分)過點(diǎn)的橢圓)的離心率為,橢圓與軸的交于兩點(diǎn),),),過點(diǎn)的直線與橢圓交于另一點(diǎn),并與軸交于點(diǎn),直線與直線叫與點(diǎn)
(I)當(dāng)直線過橢圓右交點(diǎn)時(shí),求線段的長;
(II)當(dāng)點(diǎn)異于兩點(diǎn)時(shí),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點(diǎn)F恰好是橢圓的右焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn)F,則該橢圓的離心率為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),過P點(diǎn)向橢圓的長軸做垂線,垂足為Q求線段PQ的中點(diǎn)的軌跡方程;

查看答案和解析>>

同步練習(xí)冊答案