【題目】設(shè)函數(shù)f(x)=x2+c,g(x)=aex的圖象的一個(gè)公共點(diǎn)為P(2,t),且曲線y=f(x),y=g(x)在P點(diǎn)處有相同的切線,若函數(shù)f(x)﹣g(x)的負(fù)零點(diǎn)在區(qū)間(k,k+1)(k∈Z)內(nèi),則k=

【答案】﹣1
【解析】解:f′(x)=2x,g′(x)=aex,

∵曲線y=f(x),y=g(x)在P(2,t)點(diǎn)處有相同的切線,

∴f′(2)=g′(2),即4=ae2,①

又P為兩曲線的公共點(diǎn),

∴f(2)=g(2),即4+c=ae2,②

由①②解得c=0,a= ,

令h(x)=f(x)﹣g(x)=x2 ex=x2﹣4ex﹣2

則h′(x)=2x﹣4ex﹣2,

當(dāng)x≤0時(shí),h′(x)<0,∴h(x)在(﹣∞,0)上遞減,

又h(﹣1)=1﹣4e﹣3>0,h(0)=﹣4e﹣2<0,

∴h(x)在(﹣1,0)內(nèi)有唯一零點(diǎn),

由題意知(k,k+1)=(﹣1,0),

∴k=﹣1.

所以答案是:﹣1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年射陽縣洋馬鎮(zhèn)政府決定投資8千萬元啟動(dòng)“鶴鄉(xiāng)菊!庇^光旅游及菊花產(chǎn)業(yè)項(xiàng)目.規(guī)劃從2017年起,在相當(dāng)長的年份里,每年繼續(xù)投資2千萬元用于此項(xiàng)目.2016年該項(xiàng)目的凈收入為5百萬元(含旅游凈收入與菊花產(chǎn)業(yè)凈收入),并預(yù)測(cè)在相當(dāng)長的年份里,每年的凈收入均為上一年的1.5倍.記2016年為第1年,f(n)為第1年至此后第n(n∈N*)年的累計(jì)利潤(注:含第n年,累計(jì)利潤=累計(jì)凈收入﹣累計(jì)投入,單位:千萬元),且當(dāng)f(n)為正值時(shí),認(rèn)為該項(xiàng)目贏利.
(1)試求f(n)的表達(dá)式;
(2)根據(jù)預(yù)測(cè),該項(xiàng)目將從哪一年開始并持續(xù)贏利?請(qǐng)說明理由.
(參考數(shù)據(jù): ,ln2≈0.7,ln3≈1.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n≥3,n∈N* , 在集合{1,2,…,n}的所有元素個(gè)數(shù)為2的子集中,把每個(gè)子集的較大元素相加,和記為a,較小元素之和記為b.
(1)當(dāng)n=3時(shí),求a,b的值;
(2)求證:對(duì)任意的n≥3,n∈N* , 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ex(ex﹣ax﹣1)且f(x)≥0恒成立.
(1)求實(shí)數(shù)a的值;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0 , 且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】8把椅子擺成一排,4人隨機(jī)就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)f(x)與第x天近似地滿足f(x)=8+ (千人),且參觀民俗文化村的游客人均消費(fèi)g(x)近似地滿足g(x)=143﹣|x﹣22|(元).
(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天純收入的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)擬建立一個(gè)藝術(shù)搏物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從6個(gè)招標(biāo)總是中隨機(jī)抽取3個(gè)總題,已知這6個(gè)招標(biāo)問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對(duì)每題的回答都是相獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)2道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術(shù)”,則n=(
A.7
B.35
C.48
D.63

查看答案和解析>>

同步練習(xí)冊(cè)答案