A. | ①③ | B. | ③④ | C. | ①②③ | D. | ①③④ |
分析 對(duì)于①,根據(jù)射影的定義即可判斷;
對(duì)于②,根據(jù)三垂線定理的逆定理可知,O是△BCD的垂心,
對(duì)于③在正方體中,找出滿(mǎn)足題意的四面體,即可得到直角三角形的個(gè)數(shù),
對(duì)于④作出正四面體的圖形,球的球心位置,說(shuō)明OE是內(nèi)切球的半徑,利用直角三角形,逐步求出內(nèi)切球的表面積.
解答 解:對(duì)于①,設(shè)點(diǎn)A在平面BCD內(nèi)的射影是O,因?yàn)锳B=AC=AD,所以O(shè)B=OC=OD,
則點(diǎn)A在底面BCD內(nèi)的射影是△BCD的外心,故①正確;
對(duì)于②設(shè)點(diǎn)A在平面BCD內(nèi)的射影是O,則OB是AB在平面BCD內(nèi)的射影,因?yàn)锳B⊥CD,根據(jù)三垂線定理的逆定理可知:CD⊥OB 同理可證BD⊥OC,所以O(shè)是△BCD的垂心,故②不正確;
對(duì)于③:如圖:直接三角形的直角頂點(diǎn)已經(jīng)標(biāo)出,直角三角形的個(gè)數(shù)是4.故③正確
對(duì)于④,如圖O為正四面體ABCD的內(nèi)切球的球心,正四面體的棱長(zhǎng)為:1;
所以O(shè)E為內(nèi)切球的半徑,BF=AF=$\frac{\sqrt{3}}{2}$,BE=$\frac{\sqrt{3}}{3}$,
所以AE=$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$,
因?yàn)锽O2-OE2=BE2,
所以($\frac{\sqrt{6}}{3}$-OE)2-OE2=($\frac{\sqrt{3}}{3}$)2,
所以O(shè)E=$\frac{\sqrt{6}}{12}$,
所以球的表面積為:4π•OE2=$\frac{π}{6}$,故④正確.
故選D.
點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,綜合考查了線面、面面垂直的判斷與性質(zhì),考查了學(xué)生的空間想象能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 64 | B. | 128 | C. | 192 | D. | 384 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 恒小于零 | B. | 恒等于零 | ||
C. | 恒大于零 | D. | 可能大于零,也可能小于零 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ③④ | C. | ①②③ | D. | ①③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $16({π-\sqrt{3}})$ | B. | $16({π-\sqrt{2}})$ | C. | $8({2π-3\sqrt{2}})$ | D. | $8({2π-\sqrt{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 50π | B. | 100π | C. | 200π | D. | $\frac{{125\sqrt{2}π}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com