8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≤2y}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,則z=2x-3y的最小值為-16.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≤2y}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,作出可行域如圖,
化目標(biāo)函數(shù)z=2x-3y為y=$\frac{2}{3}x$-$\frac{1}{3}$z,由$\left\{\begin{array}{l}{x=7}\\{2x-y=4}\end{array}\right.$解得A(7,10)
由圖可知,當(dāng)直線y=$\frac{2}{3}x$-$\frac{1}{3}$z過A(7,10)時直線在y軸上的截距最大,z有最小值,等于14-3×10=-16.
故答案為:-16;

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列四個命題中真命題的個數(shù)是( 。
①若y=f(x)是奇函數(shù),則y=|f(x)|的圖象關(guān)于y軸對稱;
②若logm3<logn3<0,則0<m<n<1;
③若函數(shù)f(x)對任意x∈R滿足f(x)•f(x+4)=1,則8是函數(shù)f(x)的一個周期;
④命題“在△ABC中,A>B是sinA>sinB成立的充要條件;
⑤命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=2sin(ωx+φ)(x∈R,ω>0,-π<φ<π)的部分圖象如圖所示,若將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是g(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)$z=\frac{1-i}{1+i}$(i為虛數(shù)單位)的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-3n(n∈N+).
(1)求a1,a2,a3的值;
(2)設(shè)bn=an+3,證明數(shù)列{bn}為等比數(shù)列,并求通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax+xlnx的圖象在點x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)求實數(shù)a的值;
(2)當(dāng)x>1時,求證f(x)>3(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=-x2+ax+2(x2-x)lnx.
(Ⅰ)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈(0,+∞)時,f(x)+x2>0恒成立,求整數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a<0,x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤3}\\{y≤a(x-3)}\end{array}\right.$,若z=2x+y的最大值為8,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖所示的五邊形是由一個矩形截去一個角而得,且BC=1,DE=2,AE=3,AB=4,則$\overrightarrow{CD}$等于(  )
A.$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AE}$B.$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AE}$C.-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AE}$D.-$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AE}$

查看答案和解析>>

同步練習(xí)冊答案