設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對稱,且當(dāng)x∈[ 2,3 ] 時,

(1)求的解析式;

(2)若上為增函數(shù),求的取值范圍;

(3)是否存在正整數(shù),使的圖象的最高點落在直線上?若存在,求出的值;若不存在,請說明理由.

(1)∴

       (2)a>(6x2)max=6.

       (3)證明見解析。


解析:

(1)當(dāng)x∈[-1,0]時,2-x∈[2,3],f(x)=g(2-x)= -2ax+4x3;當(dāng)x∈時,f(x)=f(-x)=2ax-4x3,

       ∴………………………………………4分

       (2)由題設(shè)知,>0對x∈恒成立,即2a-12x2>0對x∈恒成立,于是,a>6x2,從而a>(6x2)max=6.………………………8分

       (3)因f(x)為偶函數(shù),故只需研究函數(shù)f(x)=2ax-4x3在x∈的最大值.

       令=2a-12x2=0,得.…10分    若,即0<a≤6,則

       ,

       故此時不存在符合題意的

       若>1,即a>6,則上為增函數(shù),于是

       令2a-4=12,故a=8.    綜上,存在a = 8滿足題設(shè).………………13分

評析:本題通過函數(shù)的知識來切入到導(dǎo)數(shù),是在這兩個重要知識的交匯處命題,意在考查學(xué)生的邏輯思維能力與推理能力,函數(shù)及導(dǎo)數(shù)的應(yīng)用是數(shù)學(xué)的難點,也是考得最熱的話題之一,也是本套試卷的把關(guān)題,對學(xué)生的要求較高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請舉一例:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省瓦房店市高二4月月考數(shù)學(xué)理卷 題型:選擇題

設(shè)是定義在R上的偶函數(shù),當(dāng)時,,且,則不等式的解集為(    )

    A.(-1,0)∪(1,+)            B.(-1,0)∪(0,1)

  C.(-,-1)∪(1,+)     D.(-,-1)∪(0,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆福建省高二上學(xué)期期末考試文科數(shù)學(xué)試卷 題型:選擇題

設(shè)是定義在R上的偶函數(shù),當(dāng)時,,且,則不等式的解集為(     )

A.(-1,0)∪(1,+)                B.(-1,0)∪(0,1)

C.(-,-1)∪(1,+)         D.(-,-1)∪(0,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案