分析 易判斷f(x)在(-∞,0)上的單調性及f(x)圖象所過特殊點,作出f(x)的草圖,根據(jù)圖象可解不等式.
解答 解:∵f(x)在R上是奇函數(shù),且f(x)在(0,+∞)上是增函數(shù),
∴f(x)在(-∞,0)上也是增函數(shù),
由f(-3)=0,得-f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0,
作出f(x)的草圖,如圖所示:
∴f(x)>0的解集為:(-3,0)∪(3,+∞),
故答案為:(-3,0)∪(3,+∞).
點評 本題考查函數(shù)奇偶性、單調性的綜合應用,考查數(shù)形結合思想,靈活作出函數(shù)的草圖是解題關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{20\sqrt{5}π}}{3}$ | B. | 8π | C. | 20π | D. | $4\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 13 | C. | $\sqrt{19}$ | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{π}{2}$,$\frac{π}{2}$) | B. | (-π,-$\frac{π}{2}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com