如圖所示,半徑為R的半圓內(nèi)的陰影部分以直徑AB所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的表面積.(其中∠BAC=30°)
考點:球內(nèi)接多面體,球的體積和表面積
專題:計算題,空間位置關系與距離
分析:求出BC=R,AC=
3
R,CD=
3
2
R,再求出幾何體的表面積.
解答: 解:∵AB為直徑,∴∠ACB=90°.
∵tan∠BAC=
3
3
,
∴sin∠BAC=
1
2
,
∴BC=R,AC=
3
R,CD=
3
2
R.
∴幾何體的表面積為4πR2+
1
2
×2π×
3
2
(R+
3
R)=
11+
3
2
πR2
點評:本題考查組合體的表面積的求法,能夠熟練運用銳角三角函數(shù)的概念進行求解,熟悉圓錐和球的表面積公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A,∠B∠C所對的邊為a,b,c,a=7,b=8,cosC=
13
14
,則邊c2是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(
π
6
-α)=
1
3
,則cos(
5
6
π+α)=( 。
A、
1
3
B、-
1
3
C、
2
3
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,定點A(9,1)、B(3,4),內(nèi)心I(4,1),求頂點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(|x|)的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=2cos(
3
5
x-
π
3
)的對稱軸,對稱中心及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=2,且an+1=
1
2
(a1+a2+a3+…+an),則其前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=3,an+1+an=2+
(n+1)(3n+4)
an+1-an
(n∈N*,an>0).
(1)求數(shù)列{an}的通項公式;
(2)證明:
3n
(n+1)(n+2)
1
a1-1
+
1
a2-1
+…+
1
an-1
1
2
+
2
.(注:可選用公式12+22+32+…+n2=
1
6
n(n+1)(2n+1)(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=sin2x-2sin2x,y=sin2x的最小正周期為T,則f(T)的值為
 

查看答案和解析>>

同步練習冊答案