【題目】已知橢圓的焦距為,且過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為橢圓上一點(diǎn),過點(diǎn)作軸的垂線,垂足為.取點(diǎn),連接,過點(diǎn)作的垂線交軸于點(diǎn).點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說明理由.
【答案】(1) .
(2) 直線與橢圓只有一個(gè)公共點(diǎn);理由見解析.
【解析】(1)因?yàn)闄E圓過點(diǎn)
且
橢圓C的方程是
(2)
由題意,各點(diǎn)的坐標(biāo)如上圖所示,
則的直線方程:
化簡得
又,
所以帶入
求得最后
所以直線與橢圓只有一個(gè)公共點(diǎn).
第(1)題根據(jù)題意確定的大小,再將帶入方程,確定橢圓的方程;第(2)題是存在性問題,根據(jù)題意,設(shè)出,根據(jù)條件寫出的直線方程,并進(jìn)行化簡,然而點(diǎn)坐標(biāo)又在橢圓上,帶入方程,求出,即可判斷直線是否與橢圓C一定有唯一的公共點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:
A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;
B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;
C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,取).
(1)若要求6年內(nèi)樹木的高度超過5米,你會(huì)選擇哪種樹木?為什么?
(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)40名數(shù)學(xué)教師,按年齡從小到大編號(hào)為1,2,…40,F(xiàn)從中任意選取6人分成兩組分配到A,B兩所學(xué)校從事支教工作,其中三名編號(hào)較小的教師在一組,三名編號(hào)較大的教師在另一組,那么編號(hào)為8,12,28的數(shù)學(xué)教師同時(shí)入選并被分配到同一所學(xué)校的方法種數(shù)是
A. 220 B. 440 C. 255 D. 510
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信紅包是一款年輕人非常喜歡的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對(duì)甲、乙兩個(gè)品牌各種型號(hào)的手機(jī)在相同環(huán)境下?lián)尩郊t包的個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):
品牌 型號(hào) | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(個(gè)) | 4 | 3 | 8 | 6 | 12 |
乙品牌(個(gè)) | 5 | 7 | 9 | 4 | 3 |
紅包個(gè)數(shù) 手機(jī)品牌 | 優(yōu)良 | 一般 | 合計(jì) |
甲品牌(個(gè)) | |||
乙品牌(個(gè)) | |||
合計(jì) |
(Ⅰ)如果搶到紅包個(gè)數(shù)超過個(gè)的手機(jī)型號(hào)為“優(yōu)良”,否則為“一般”,請(qǐng)完成上述表格,并據(jù)此判斷是否有的把握認(rèn)為搶到紅包的個(gè)數(shù)與手機(jī)品牌有關(guān)?
(Ⅱ)不考慮其它因素,現(xiàn)要從甲、乙兩品牌的種型號(hào)中各選出種型號(hào)的手機(jī)進(jìn)行促銷活動(dòng),求恰有一種型號(hào)是“優(yōu)良”,另一種型號(hào)是“一般”的概率;
參考公式:隨機(jī)變量的觀察值計(jì)算公式:,
其中.臨界值表:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
(1)若a=2,直線l與x軸的交點(diǎn)是M,N是圓C上一動(dòng)點(diǎn),求|MN|的最大值;
(2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間上的最小值是,求的值;
(3)設(shè),是函數(shù)圖象上任意不同的兩點(diǎn),線段的中點(diǎn)為,直線的斜率為.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點(diǎn)的直線(為參數(shù))與曲線相交于兩點(diǎn).
(I)試寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(Ⅱ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A.(0,1)B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com