已知圓C的方程為x2+y2=4.

(1)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=,求直線l的方程;

(2)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

(文)(本小題共13分)已知圓C的方程為x2+y2=4.

(1)直線l過(guò)點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=,求直線l的方程;

(2)圓C上一動(dòng)點(diǎn)M(x0,y0),=(0,y0),若向量,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線.

解:(1)①直線l垂直于x軸時(shí),直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)為(1,)和(1,),其距離為滿足題意.                                            

②若直線l不垂直于x軸,設(shè)其方程為y-2=k(x-1),

即kx-y-k+2=0.                                                           

設(shè)圓心到此直線的距離為d,

=,得d=1,                                                 

∴1=,k=.                                                       

故所求直線方程為3x-4y+5=0.                                              

綜上所述,所求直線方程為3x-4y+5=0或x=1.                                  

(2)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0)(y0≠0),Q點(diǎn)坐標(biāo)為(x,y),

則N點(diǎn)坐標(biāo)是(0,y0).                                                        

,

∴(x,y)=(x0,2y0),

即x0=x,y0=.                                                             

又∵x02+y02=4,

∴x2+=4(y≠0).                                                          

∴Q點(diǎn)的軌跡方程是=1(y≠0).                                       

軌跡是一個(gè)焦點(diǎn)在y軸上的橢圓,除去短軸端點(diǎn).                               

注:多端點(diǎn)時(shí),合計(jì)扣1分.

(文)解:(1)①若直線l垂直于x軸,則此時(shí)直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)分別為(1,)和(1,),這兩點(diǎn)間的距離為2,滿足題意.                                

②若直線l不垂直于x軸,設(shè)其方程為y-2=k(x-1),即kx-y-k+2=0.                  

設(shè)圓心到此直線的距離為d,

∵2=,得d=1.                                                 

∴1=,解得k=.                                                 

故所求直線方程為3x-4y+5=0.                                              

綜上所述,所求直線方程為3x-4y+5=0或x=1.                                  

(2)設(shè)Q點(diǎn)坐標(biāo)為(x,y),∵M(jìn)點(diǎn)坐標(biāo)是(x0,y0),=(0,y0),,

∴(x,y)=(x0,2y0).

∴x=x0,y=2y0.                                                            

∵x02+y02=4,

∴x2+()2=4,即=1.                                                

∴Q點(diǎn)的軌跡方程是=1.                                           

軌跡是一個(gè)焦點(diǎn)在y軸上的橢圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2+4x-2y=0,經(jīng)過(guò)點(diǎn)P(-4,-2)的直線l與圓C相交所得到的弦長(zhǎng)為2,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山二模)已知圓C的方程為x2+y2+2x-2y+1=0,當(dāng)圓心C到直線kx+y+4=0的距離最大時(shí),k的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=r2,在圓C上經(jīng)過(guò)點(diǎn)P(x0,y0)的切線方程為x0x+y0y=r2.類(lèi)比上述性質(zhì),則橢圓
x2
4
+
y2
12
=1
上經(jīng)過(guò)點(diǎn)(1,3)的切線方程為
x+y-4=0
x+y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2-2x+ay+1=0,且圓心在直線2x-y-1=0.
(1)求圓C的標(biāo)準(zhǔn)方程.
(2)若P點(diǎn)坐標(biāo)為(2,3),求圓C的過(guò)P點(diǎn)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的方程為x2+y2=4,過(guò)點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓T:
x2
a2
+
y2
b2
(a>b>0)
的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)是否存在斜率為
1
2
的直線l與曲線C交于P、Q兩不同點(diǎn),使得
OP
OQ
=
5
2
(O為坐標(biāo)原點(diǎn)),若存在,求出直線l的方程,否則,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案