分析 (Ⅰ)根據(jù)題意,對于g(x)=$\frac{f(x)-f(-x)}{2}$,先分析定義域,再計算可得g(-x)=-g(x),故可得g(x)為奇函數(shù),對于h(x)=$\frac{f(x)+f(-x)}{2}$,先分析定義域,再計算可得h(-x)=h(x),可以證明h(x)為偶函數(shù),
(Ⅱ)將f(x)=ln(ex+1)代入g(x)=$\frac{f(x)-f(-x)}{2}$,計算可得g(x)的值,又由f(x)=g(x)+h(x),即h(x)=f(x)-g(x),計算即可得答案.
解答 解:(Ⅰ)證明:對于g(x)=$\frac{f(x)-f(-x)}{2}$,其定義域為R,
有g(shù)(-x)=$\frac{f(-x)-f(x)}{2}$=-g(x),則g(x)=$\frac{f(x)-f(-x)}{2}$為奇函數(shù);
h(x)=$\frac{f(x)+f(-x)}{2}$,其定義域為R,
h(-x)=$\frac{f(-x)+f(x)}{2}$=h(x),則h(x)=$\frac{f(x)+f(-x)}{2}$為偶函數(shù);
(Ⅱ)f(x)=ln(ex+1),
則g(x)=$\frac{f(x)-f(-x)}{2}$=$\frac{ln({e}^{x}+1)-ln({e}^{-x}+1)}{2}$=$\frac{ln{e}^{x}}{2}$=$\frac{ln(\frac{{e}^{x}-1}{{e}^{-x}+1})}{2}$=$\frac{x}{2}$,
而f(x)=g(x)+h(x),
則h(x)=f(x)-g(x)=ln(ex+1)-$\frac{x}{2}$.
點評 本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)奇偶性的運用,關(guān)鍵是靈活運用函數(shù)的奇偶性,注意涉及函數(shù)的奇偶性時,要優(yōu)先分析定義域.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{8}$ | C. | -$\frac{5}{8}$ | D. | $\frac{11}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com