如圖,在矩形ABCD中,AB=3,BC=6,點(diǎn)E為BC的中點(diǎn),點(diǎn)F在CD邊上,若
DF
=2
FC
,則
AE
BF
的值為(  )
A、-12B、12
C、-15D、15
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:以A為原點(diǎn),AB,AD所在直線分別為x,y軸建立平面直角坐標(biāo)系,寫出A,B,E,F(xiàn)的坐標(biāo),進(jìn)而得出
AE
BF
的坐標(biāo),再由向量的坐標(biāo)公式和數(shù)量積的坐標(biāo)表示,即可得到所求.
解答: 解:以A為原點(diǎn),AB,AD所在直線分別為x,y軸建立平面直角坐標(biāo)系,則A(0,0),B(3,0),E(3,3),F(xiàn) (2,6),
AE
=(3,3),
BF
=(-1,6),則
AE
BF
=-3+18=15,
故選D.
點(diǎn)評(píng):本題主要考查平面向量的數(shù)量積的運(yùn)算,本解法利用了坐標(biāo)法解決向量問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若扇形的周長(zhǎng)為4cm,面積為1cm2,則此扇形的圓心角弧度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某項(xiàng)工程的流程圖如下圖所示,完成該工程的最短總工期是( 。
A、7B、9C、10D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用定義證明函數(shù)f(x)=
1-x2
在[-1,0]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下五個(gè)結(jié)論:
①若△ABC為鈍角三角形,則sinA<cosB.
②存在區(qū)間(a,b)使y=cosx為減函數(shù)而sinx<0
③函數(shù)y=2x3-3x+1的圖象關(guān)于點(diǎn)(0,1)成中心對(duì)稱
④y=cos2x+sin(
π
2
-x)既有最大、最小值,又是偶函數(shù)
⑤y=|sin(2x+
π
4
)|最小正周期為π
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,若b-
c
2
=acosC,且a=
3
b
,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

x=4cscθ
y=2cotθ
(θ為參數(shù),θ≠kπ,k∈z)的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B是直線3x+4y+2=0與圓x2+y2+4y=0的兩個(gè)交點(diǎn),則線段AB的垂直平分線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=2,a1+a4=7
(1)求數(shù)列{an}的通項(xiàng)公式
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求S8

查看答案和解析>>

同步練習(xí)冊(cè)答案