(本題滿分13分)
如圖,在六面體中,平面∥平面,
⊥平面,,
.且,
(1)求證: ∥平面;
(2)求二面角的余弦值;
(3) 求五面體的體積.


(1)略
(2)
(3)4

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分)
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點(diǎn),過(guò)E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點(diǎn)F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求異面直線AF與BG所成的角的大;
(2)求平面APB與平面CPD所成的銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

本小題滿分14分
正方形的邊長(zhǎng)為1,分別取邊的中點(diǎn),連結(jié),   
為折痕,折疊這個(gè)正方形,使點(diǎn)重合于一點(diǎn),得到一   
個(gè)四面體,如下圖所示。

 
(1)求證:;
(2)求證:平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)多面體的三視圖和直觀圖如圖所示,其中分別是、的中點(diǎn),上的一動(dòng)點(diǎn)。

(1)求證
(2)當(dāng)點(diǎn)落在什么位置時(shí),平行于平面
(3)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(8分)如圖,四棱錐底面是正方形且四個(gè)頂點(diǎn)在球的同一個(gè)大圓(球面被過(guò)球心的平面截得的圓叫做大圓)上,點(diǎn)在球面上且,且已知。
(1)求球的體積;
(2)設(shè)中點(diǎn),求異面直線所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

在右圖的正方體中,M、N分別為棱BC和棱CC1的中點(diǎn),則異面直線AC和MN所成的角為(  )

A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正三棱錐底面邊長(zhǎng)為6,高為,求這個(gè)正三棱錐的側(cè)面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
某甜品店制作蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圓錐形(如圖)。現(xiàn)把半徑為10cm的圓形蛋皮分成5個(gè)扇形,用一個(gè)扇形蛋皮圍成錐形側(cè)面(蛋皮厚度忽略不計(jì)),求該蛋筒冰淇淋的表面積和體積(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知球的兩個(gè)平行截面的面積分別是5π和8π,它們位于球心的同一側(cè),且相距為1,求球的體積。

查看答案和解析>>

同步練習(xí)冊(cè)答案