(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點(diǎn).
(Ⅱ)過圓心作于點(diǎn),當(dāng)變化時,求點(diǎn)的軌跡的方程.
(Ⅲ)直線與點(diǎn)的軌跡交于點(diǎn),與圓交于點(diǎn),是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.
(Ⅰ)見解析;(Ⅱ)軌跡的方程為.
(Ⅲ)存在,使得且.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的綜合運(yùn)用。
解:(Ⅰ)方法1:圓心的坐標(biāo)為,半徑為3…………………1分
圓心到直線距離………………2分
∴
∴即
∴直線與圓恒有兩個公共點(diǎn)……………………4分
方法2:聯(lián)立方程組…………………………1分
消去,得………………2分
∴直線與圓恒有兩個公共點(diǎn)………………………4分
方法3:將圓化成標(biāo)準(zhǔn)方程為.…1分
由可得:.
解得,所以直線過定點(diǎn).……………3分
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012102514413893755036/SYS201210251442229531569074_DA.files/image024.png">在圓C內(nèi),所以直線與圓恒有兩個公共點(diǎn).………………4分
(Ⅱ)設(shè)的中點(diǎn)為,由于°,
∴
∴點(diǎn)的軌跡為以為直徑的圓.………………7分
中點(diǎn)的坐標(biāo)為,.
∴所以軌跡的方程為.………………9分
(Ⅲ)假設(shè)存在的值,使得.
如圖所示,
有,……10分
又,,
其中為C到直線的距離.……………12分
所以,化簡得.解得.
所以存在,使得且.……………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com