設(shè)P(x + a,y1),Q(x,y2),R(2 + a,y3)是函數(shù)f(x) = 2x + a 的函數(shù)圖象上三個不同的點,且滿足y1 + y3 = 2y2的實數(shù)x有且只有一個,試求實數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(-3,0),N(3,0),設(shè)P(x,y)是曲線
|x|
5
+
|y|
4
=1
上的點,則下列式子恒成立的是( 。
A、|PM|+|PN|=10
B、|PM|-|PN|=10
C、|PM|+|PN|≥10
D、|PM|+|PN|≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx與g(x)=a2x2+ax+1(a>0)
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點P,Q,且曲線y=f(x)和y=g(x)在點P,Q處的切線平行,求實數(shù)a的值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),若對于任意的x∈(0,+∞),e
1
f′(x)
-mx≥0
恒成立,求實數(shù)m的最大值;
(3)在(2)的條件下且當(dāng)a取m最大值的
2
e
倍時,當(dāng)x∈[1,e]時,若函數(shù)h(x)=f(x)-kf′(x)的最小值恰為g(x)的最小值,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=21nx與g(x)=a2x2+ax+1(a>0).
(1)設(shè)直線x=l與曲線y=f(x)和y=g(x)分別相交于點P,Q且曲線y=f(x)和y=g(x)在點P,Q處的切線平行,求實數(shù)a的值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),若對于任意的x∈(0,+∞),e
1f(x)
-mx≥0恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年上海市嘉定一中第一學(xué)期高三數(shù)學(xué)測試二(理) 題型:044

已知函數(shù)f(x)=2x+a的反函數(shù)是y=f-1(x).

設(shè)P(x+a,y1),Q(x,y2),R(2+a,y3)是y=f-1(x)圖象上不同的三點.

(1)如果存在正實數(shù)x,使y1、y2、y3成等差數(shù)列,試用x表示實數(shù)a;

(2)在(1)的條件下,如果實數(shù)x是唯一的,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年上海市嘉定一中第一學(xué)期高三數(shù)學(xué)測試二(文) 題型:044

已知函數(shù)f(x)=2x+a的反函數(shù)是y=f-1(x).

設(shè)P(x+a,y1),Q(x,y2),R(2+a,y3)是y=f-1(x)圖象上不同的三點.

(1)如果存在正實數(shù)x,使y1、y2、y3成等差數(shù)列,試用x表示實數(shù)a;

(2)在(1)的條件下,如果實數(shù)x是唯一的,試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案