設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集上,則函數(shù)y=f(x-1)與y=-f(1-x)的圖象關(guān)于(    )對(duì)稱。

A.直線x=0

B.直線x=1

C.點(diǎn)(0,0)

D.點(diǎn)(1,0)

答案:D
提示:

設(shè),則,,則兩圖像在坐標(biāo)上關(guān)于原點(diǎn)對(duì)稱。當(dāng)時(shí),,故兩圖象在坐標(biāo)上關(guān)于點(diǎn)(1,0)對(duì)稱。故選D。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)=ax+
1x+b
(a≠0)
的圖象過點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z)
,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)y=f(x)=ax+
1
x+b
(a≠0)
的圖象過點(diǎn)(0,-1)且與直線y=-1有且只有一個(gè)公共點(diǎn);設(shè)點(diǎn)P(x0,y0)是函數(shù)y=f(x)圖象上任意一點(diǎn),過點(diǎn)P分別作直線y=x和直線x=1的垂線,垂足分別是M,N.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)的圖象是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心Q;
(3)證明:線段PM,PN長(zhǎng)度的乘積PM•PN為定值;并用點(diǎn)P橫坐標(biāo)x0表示四邊形QMPN的面積..

查看答案和解析>>

同步練習(xí)冊(cè)答案