分析 (Ⅰ)曲線C的極坐標方程為ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4(sinθ+cosθ),兩邊同乘以ρ,可求曲線C的直角坐標方程;
(Ⅱ)求出直線的普通方程,可得圓心到直線的距離,利用勾股定理求|AB|的值.
解答 解:(Ⅰ)曲線C的極坐標方程為ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)=4(sinθ+cosθ),
兩邊同乘以ρ,得x2+y2=4y+4x,
∴它的直角坐標方程為:(x-2)2+(y-2)2=8;
(Ⅱ)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=2-t}\end{array}\right.$(t為參數(shù)),普通方程為x+y-2=0,
圓心到直線的距離d=$\frac{|2+2-2|}{\sqrt{2}}$=$\sqrt{2}$,
∴|AB|=2$\sqrt{8-2}$=2$\sqrt{6}$.
點評 本題重點考查了曲線的參數(shù)方程和極坐標方程,直線與圓的位置關系等知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (1,+∞) | C. | (-1,0) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{8}$ | C. | log32 | D. | log23 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com