分析 由于函數(shù)f(x)是分段函數(shù),且對任意的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,得到x=0時,f(x)=k(1-a2),進而得到,關(guān)于a的方程(3-a)2=k(1-a2)有實數(shù)解,即得△≥0,解出k即可.
解答 解:由分段函數(shù)的表達式當x=0時,f(x)=k(1-a2),
又由對任意的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,
∴函數(shù)必須為連續(xù)函數(shù),即在x=0附近的左右兩側(cè)函數(shù)值相等,
∴k≠0,且(3-a)2=k(1-a2),即(k+1)a2-6a+9-k=0有實數(shù)解,
所以△=62-4(k+1)(9-k)≥0,解得k≤0或k≥8,
又∵k≠0,
∴k的取值范圍為k<0或k≥8,
故答案為:k<0或k≥8.
點評 本題主要考查分段函數(shù)的應用,結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.綜合性較強,難度較大.注意利用數(shù)形結(jié)合進行求解.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1+2π | B. | 1+$\frac{4π}{3}$ | C. | 1+$\frac{π}{2}$ | D. | 1+$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$π | B. | π+1 | C. | π+$\frac{1}{6}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{3}$π | B. | $\frac{4}{3}$π | C. | $\sqrt{6}$π | D. | 8$\sqrt{6}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|$\frac{1}{a}$<x<1} | B. | {x|-1<x<$\frac{1}{a}$} | C. | {x|1$<x<\frac{1}{a}$} | D. | {x|-$\frac{1}{a}$<x<-1} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com