10.在△ABC中,角A,B,C的對邊分別為a,b,c,且2acos(π+C)+2b=c.
(1)求角A的大;
(2)若cos($\frac{3π}{2}$-C)+2sin(π-B)=0,且a=$\sqrt{3}$,試判斷△ABC的形狀,并說明理由.

分析 (1)利用誘導公式,余弦定理化簡已知可求$cosA=\frac{1}{2}$,結合范圍A∈(0,π),可求A的值.
(2)利用誘導公式,正弦定理化簡等式可得c=2b,又由余弦定理可求b,c的值,理由勾股定理即可判斷△ABC的形狀.

解答 (本題滿分12分)
解:(1)在△ABC中,由2acos(π+C)+2b=c,
可得:-2acosC+2b=c.即:$-2a(\frac{{{a^2}+{b^2}-{c^2}}}{2ab})+2b=c$,
化簡得b2+c2-a2=bc,即:$cosA=\frac{1}{2}$,
又因為:A∈(0,π),
所以:$A=\frac{π}{3}$.…6分
(2)△ABC的形狀為直角三角形,理由如下:
由$cos(\frac{3π}{2}-C)+2sin(π-B)=0$,得-sinC+2sinB=0,即c=2b,
又由余弦定理 a2=b2+c2-2bccosA,
將a=$\sqrt{3}$,A=$\frac{π}{3}$,c=2b 代入,可得:3=b2+4b2-2b2
解得 b=1,c=2,即a2+b2=c2
即△ABC的形狀為直角三角形,得證.…12分

點評 本題主要考查了誘導公式,余弦定理,正弦定理,勾股定理在解三角形中的綜合應用,考查了轉(zhuǎn)化思想的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.已知Sn為等差數(shù)列{an}的前n項和,a1=8,公差為-1,則S5等于( 。
A.20B.24C.25D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.利用隨機模擬方法計算曲線y=$\frac{1}{x}$,x=1,x=2和y=0所圍成的如圖陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.二次函數(shù)f(x)=x2-2x+3 在[-2,2]的最大值為11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖所示,在一個邊長為1的正方形AOBC內(nèi),曲線y=x3(x>0)和曲線y=$\sqrt{x}$圍成一個葉形圖(陰影部分),向正方形AOBC內(nèi)隨機投一點(該點落在正方形AOBC內(nèi)任何一點是等可能的),則所投的點落在葉形圖內(nèi)部的概率是( 。
A.$\frac{5}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如果4個數(shù)x1,x2,x3,x4的方差7,那么3x1+5,3x2+5,3x3+5,3x4+5,這4個數(shù)的方差是(  )
A.12B.21C.26D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設樣本數(shù)據(jù)x1,x2,…,x20的均值和方差分別為1和8,若yi=2xi+3(i=1,2,…,20),則y1,y2,…,y20的均值和方差分別是( 。
A.5,32B.5,19C.1,32D.4,35

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.給出定義:若m-$\frac{1}{2}$<x≤m+$\frac{1}{2}$(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎上給出下列關于函數(shù)f(x)=x-{x}的四個命題:
①點(k,0)是y=f(x)的圖象的對稱中心,其中k∈Z;
②y=f(x)的定義域是R,值域是(-$\frac{1}{2}$,$\frac{1}{2}$];
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-$\frac{1}{2}$,$\frac{3}{2}$]上是增函數(shù).
則上述命題中真命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.由半徑為20cm的半圓面所圍成圓錐的高為$10\sqrt{3}$(cm).

查看答案和解析>>

同步練習冊答案