7.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則a20等于(  )
A.7B.3C.-1D.1

分析 利用等差數(shù)列的通項公式,列出方程組,求出首項和公差,由此能求出a20

解答 解:∵{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,
∴a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,
∴a3=35,a4=33,d=a4-a3=33-35=-2,
a1=a3-2d=35+4=39,
∴a20=a1+39d=39-19×2=1.
故選:D.

點評 本題考查等差數(shù)列的第20項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在正方形ABCD中,P為DC邊上的動點,設(shè)向量$\overrightarrow{AC}=λ\overrightarrow{DB}+μ\overrightarrow{AP}$,則λ+μ的最大值為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在正四棱柱ABCD-A1B1C1D1中,若AA1=2AB,則異面直線BD1與CC1所成角的正切值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,過C的左焦點F1,且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點分別為A,B,直線l經(jīng)過點B且垂直于x軸,點P是點C上異于A,B的任意一點,直線AP交直線l于點Q.
①設(shè)直線OQ,BP的斜率分別為k1,k2,求證:k1•k2為定值;
②當(dāng)點P運動時,試判斷點Q與以BP為直徑的圓的位置關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,表示的平面區(qū)域上運動,則z=x-y的取值范圍是(  )
A.[1,2]B.[-2,1]C.[-2,-1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若變量x,y滿足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y-25≤0\\ x≥1\end{array}\right.$,實數(shù)$\frac{z}{2}$是2x和y的等差中項,則z的最大值為( 。
A.3B.6C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個幾何體的三視圖如圖所示,則這個幾何體的體積為$\frac{44}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≤0\end{array}\right.$,則$\frac{y-1}{x+2}$的取值范圍為[$-\frac{1}{2}$,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.手機完全充滿電量,在開機不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時間稱為手機的待機時間.為了解A,B兩個不同型號手機的待機時間,現(xiàn)從某賣場庫存手機中隨機抽取A,B兩個型號的手機各7臺,在相同條件下進(jìn)行測試,統(tǒng)計結(jié)果如下:
手機編號1234567
A型待機時間(h)120125122124124123123
B型待機時間(h)118123127120124ab
其中,a,b是正整數(shù),且a<b
(Ⅰ)該賣場有56臺A型手機,試估計其中待機時間不少于123小時的臺數(shù);
(Ⅱ)從A型號被測試的7臺手機中隨機抽取4臺,記待機時間大于123小時的臺數(shù)為X,求X 的分布列;
(Ⅲ)設(shè)A,B兩個型號被測試手機待機時間的平均值相等,當(dāng)B型號被測試手機待機時間的方差最小時,寫出a,b的值(結(jié)論不要求證明).

查看答案和解析>>

同步練習(xí)冊答案