(本小題滿分12分)
已知,,O為坐標原點,動點E滿足:
(Ⅰ) 求點E的軌跡C的方程;
(Ⅱ)過曲線C上的動點P向圓O:引兩條切線PA、PB,切點分別為A、B,直線AB與x軸、y軸分別交于M、N兩點,求ΔMON面積的最小值.
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,
且,.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)
給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為.
(1)求橢圓C和其“準圓”的方程;
(2)若點是橢圓C的“準圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;
(3)在橢圓C的“準圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點P為線段P1P2的一個三等分點,且雙曲線E的離心率為.
(1)若P1、P2點的橫坐標分別為x1、x2,則x1、x2之間滿足怎樣的關系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設雙曲線E上的動點,兩焦點,若為鈍角,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓O:和定點A(2,1),由圓O外一點向圓O引切線PQ,切點為Q,且滿足
(1) 求實數(shù)a、b間滿足的等量關系;
(2) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩焦點是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點.
(I)求橢圓的方程;
(II)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com