已知點(diǎn),橢圓與直線交于點(diǎn)、,則的周長(zhǎng)為(  )
A.4B.8C.D.
B
由橢圓方程知.則是橢圓的右焦點(diǎn),直線與x軸交點(diǎn)為,是橢圓的左焦點(diǎn);根據(jù)橢圓定義得 ,所以.
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若橢圓與曲線有公共點(diǎn),則橢圓的離心率的取值范圍是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的焦點(diǎn)為F,橢圓C的離心率為,是它們的一個(gè)交點(diǎn),且
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知,點(diǎn)A,B為橢圓上的兩點(diǎn),且弦AB不平行于對(duì)稱軸,的中點(diǎn),試探究是否為定值,若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中有一直角梯形,的中點(diǎn)為,,,,,以為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn),問(wèn)是否存在直線與橢圓交于兩點(diǎn)且,若存在,求出直線的斜率的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是橢圓的左、右頂點(diǎn),是橢圓上任意一點(diǎn),且直線的斜率分別為,若的最小值為,則橢圓的離心率為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的方程為:,其焦點(diǎn)在軸上,離心率.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足,其中M,N是橢圓上的點(diǎn),直線OM與ON的斜率之積為,求證:為定值.
(3)在(2)的條件下,問(wèn):是否存在兩個(gè)定點(diǎn),使得為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如題21圖,已知離心率為的橢圓過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線交橢圓C于不同的兩點(diǎn)A、B。
(1)求面積的最大值;
(2)證明:直線MA、MB與x軸圍成一個(gè)等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本題滿分16分)
點(diǎn)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于軸上方,
(1)求點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線AP的距離等于,求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,求橢圓上的點(diǎn)到點(diǎn)M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓Gy2=1.過(guò)點(diǎn)(m,0)作圓x2y2=1的切線l交橢圓GA,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案