如圖,在三棱錐中,,

(Ⅰ)求證;

(Ⅱ)求二面角的大小;

(Ⅲ)求點到平面的距離.

(Ⅰ)略,(Ⅱ),(Ⅲ)


解析:

解法一

(Ⅰ)取中點,連結(jié)

,

,

平面

平面

(Ⅱ),

,

,即,且,

平面

中點.連結(jié)

,

在平面內(nèi)的射影,

是二面角的平面角.

中,,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面

平面平面

,垂足為

平面平面

平面

的長即為點到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,,

到平面的距離為

解法二

(Ⅰ),,

,

,

平面

平面,

(Ⅱ)如圖,以為原點建立空間直角坐標系

,

中點,連結(jié)

,

是二面角的平面角.

,,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長為點到平面的距離.

如(Ⅱ)建立空間直角坐標系

,

的坐標為

到平面的距離為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013屆廣西玉林市高二下學期三月月考文科數(shù)學試卷(解析版) 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,中點.

 (Ⅰ)證明:平面

(Ⅱ)求二面角的余弦值.    (本題12分)

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市高三上學期期末理科數(shù)學試卷 題型:解答題

如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面,且分別交,交的延長線于

(Ⅰ)求證:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011---2012學年四川省高二10月考數(shù)學試卷 題型:解答題

如圖:在三棱錐中,已知點、、分別為棱、、的中點.

(Ⅰ)求證:∥平面;

(Ⅱ)若,,求證:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省2013屆高一下學期期末考試數(shù)學(理) 題型:解答題

如圖,在三棱錐中,,中點。(1)求證:平面

(2)在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點位置;若不存在,說明理由。

 

查看答案和解析>>

同步練習冊答案