(本小題滿分12分)如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點.

(1)求證:平面;
(2)求證:平面
(3)設(shè),求三棱錐的體積.
(1)詳見解析,(2)詳見解析,(3)

試題分析:(1)證明線面平行,關(guān)鍵在于找出線線平行.顯然DE與三角形ABC三條邊都不平行,因此需作輔助線.因為D,E都是中點,所以取中點,連接,可證得四邊形是平行四邊形.因而有,再根據(jù)線面平行判定定理就可證得.(2)要證明平面,需證明,前面在平面中證明,利用勾股定理,即通過計算設(shè),則.∴,∴.后者通過線面垂直與線線垂直的轉(zhuǎn)化得,即由面,得,再得.(3)求三棱錐的體積關(guān)鍵在于求高.由(2)得平面,所以三棱錐的高為的一半,因此三棱錐的體積為.
試題解析:(1)取中點,連接,
,∴.
∴四邊形是平行四邊形.
,又∵,
平面.                 4分
(2)∵是等腰直角三角形斜邊的中點,∴.
又∵三棱柱是直三棱柱,∴面.
,∴.
設(shè),則.
. ∴.
,∴平面.                 8分

(3)∵點是線段的中點,∴點到平面的距離是點到平面距離的.
,∴三棱錐的高為;在中,,所以三棱錐的底面面積為,故三棱錐的體積為.             12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形中,°,,平面,,,設(shè)的中點為

(1) 求證:平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,垂直于矩形所在平面,

(1)求證:;
(2)若矩形的一個邊,,則另一邊的長為何值時,三棱錐的體積為?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱柱的底面邊長為,高為2,則直三棱柱的外接球的表面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱錐中,,,二面角的余弦值是,若都在同一球面上,則該球的表面積是.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直角梯形,,沿折疊成三棱錐,當三棱錐體積最大時,求此時三棱錐外接球的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

棱長為1的正方體的8個頂點都在球的表面上,分別是棱的中點,點,分別是線段(不包括端點)上的動點,且線段平行于平面,則
(1)直線被球截得的線段長為
(2)四面體的體積的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三角形所在平面與矩形所在平面互相垂直,,,若點都在同一球面上,則此球的表面積等于        .

查看答案和解析>>

同步練習冊答案