電燈可在點A與桌面的垂直線上移動(如圖),在桌面上另一點B離垂足O的距離為a,為使點B處有最大的照度(照度I與sin∠OBA成正比,與r2成反比,且比例系數(shù)均為正的常數(shù)),則電燈A與點O的距離為(  )

A. a       B. a        C. a        D. a

 

【答案】

B

【解析】設的距離為,則,

于是,.

時,即方程的根為(舍)與,在我們討論的半閉區(qū)間內(nèi),所以函數(shù)在點取極大值,也是最大值。即當電燈與點距離為時,點的照度為最大.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電燈可在點A與桌面的垂直線上移動(如圖),在桌面上另一點B離垂足O的距離為a,為使點B處有最大的照度(照度I與sin∠OBA成正比,與r2成反比,且比例系數(shù)均為正的常數(shù)),則電燈A與點O的距離為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:x2=2py(p>0)的焦點為F,A(x0,y0)(x0≠0)是拋物線C上的一定點.
(1)已知直線l過拋物線C的焦點F,且與C的對稱軸垂直,l與C交于Q,R兩點,S為C的準線上一點,若△QRS的面積為4,求p的值;
(2)過點A作傾斜角互補的兩條直線AM,AN,與拋物線C的交點分別為M(x1,y1),N(x2,y2).若直線AM,AN的斜率都存在,證明:直線MN的斜率等于拋物線C在點A關于對稱軸的對稱點A1處的切線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓弧上的一點C之間設計為直線段小路,在路的兩側(cè)邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側(cè)邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設∠BAC=θ(弧度),將綠化帶總長度表示為θ的函數(shù)S(θ);
(2)試確定θ的值,使得綠化帶總長度最大.

查看答案和解析>>

同步練習冊答案