2.若變量x,y滿(mǎn)足不等式組$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y 的最大值為(  )
A.3B.4C.5D.6

分析 確定不等式表示的平面區(qū)域,明確目標(biāo)函數(shù)的幾何意義,即可求得最大值

解答 解:已知不等式組表示的區(qū)域如圖,由目標(biāo)函數(shù)的幾何意義得到,當(dāng)直線(xiàn)z=2x+y經(jīng)過(guò)圖中B時(shí),在y軸的截距最大,即z最大,又B(2,1),
所以z是最大值為2×2+1=5;
故選:C.

點(diǎn)評(píng) 本題考查線(xiàn)性規(guī)劃知識(shí),考查數(shù)形結(jié)合的數(shù)學(xué)思想,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.空間直角坐標(biāo)系中點(diǎn)P(1,3,5)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)P′的坐標(biāo)是( 。
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.${∫}_{-2}^{2}$(sinx+ex)dx=e2-e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知F1、F2是橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),F(xiàn)1(-1,0),且橢圓M過(guò)點(diǎn)(1,$\frac{2\sqrt{3}}{3}$).
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)F1、F2分別作直線(xiàn)l1與l2,l1交橢圓于B,D兩點(diǎn),l2交橢圓于A,C兩點(diǎn),且l1⊥l2,若四邊形ABCD的面積為$\frac{96}{25}$,求直線(xiàn)l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導(dǎo)函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)全集U=R,集合M={x|x2+x-2>0},N={x|{2x-1≤$\frac{1}{2}$},則(∁UM)∩N=( 。
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.(x3-$\frac{1}{x}$)4的展開(kāi)式中x8的系數(shù)為-4.(用數(shù)字填寫(xiě)答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知P是雙曲線(xiàn)$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一點(diǎn),M是圓(x+5)2+y2=1上任意一點(diǎn),設(shè)P到雙曲線(xiàn)的漸近線(xiàn)的距離為d,則d+|PM|的最小值為( 。
A.8B.9C.$\frac{47}{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)于非零復(fù)數(shù)a,b,c,有以下七個(gè)命題:
①a+$\frac{1}{a}$≠0;
②若a=-$\overline{a}$,$\overline{a}$為a的共軛復(fù)數(shù),則a為純虛數(shù);
③(a+b)2=a2+2ab+b2;
④若a2=ab,則a=b;
⑤若|a|=|b|,則a=±b;
⑥若a2+b2+c2>0,則a2+b2>-c2;
⑦若a2+b2>-c2,則a2+b2+c2>0.
其中,真命題的個(gè)數(shù)為( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案